Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22281000

ABSTRACT

BACKGROUNDVLPCOV-01 is a lipid nanoparticle-encapsulated self-amplifying RNA (saRNA) vaccine that expresses a membrane-anchored receptor-binding domain (RBD) derived from the SARS-CoV-2 spike protein. METHODSA phase 1 study of VLPCOV-01 was conducted at Medical Corporation Heishinkai OPHAC Hospital, Japan. Participants aged 18 to 55 or [≥]65 years who had completed two doses of the BNT162b2 mRNA vaccine 6 to 12 months previously were randomised to receive one intramuscular vaccination of 0{middle dot}3, 1{middle dot}0, or 3{middle dot}0 g VLPCOV-01, 30 g BNT162b2, or placebo between February 16, 2022, and March 17, 2022. Solicited adverse events were collected up to 6 days post-administration. Interim immunogenicity analyses included SARS-CoV-2 IgG and neutralising antibody titres. Follow-up for safety and immunogenicity evaluation is ongoing. (The trial is registered: jRCT2051210164). FINDINGS92 healthy adults were enrolled, with 60 participants receiving VLPCOV-01. No serious adverse events were reported up to 26 weeks, and no prespecified trial-halting events were met. VLPCOV-01 induced robust IgG titres against SARS-CoV-2 RBD protein that were maintained up to 26 weeks in non-elderly participants, with geometric means ranging from 5037 (95% CI 1272-19,940) at 0{middle dot}3 g to 12,873 (95% CI 937-17,686) at 3 g, in comparison to 3166 (95% CI 1619-6191) with 30 g BNT162b2. Among elderly participants, IgG titres at 26 weeks post-vaccination with 3 g VLPCOV-01 were 9865 (95% CI 4396-22138) compared to 4183 (95% CI 1436-12180) following vaccination with 30 g BNT162b2. Pseudovirus neutralising antibody responses were observed against multiple SARS-CoV-2 variants and strongly correlated with anti-SARS-CoV-2 IgG (r=0{middle dot}950, p<0{middle dot}001). INTERPRETATIONVLPCOV-01 is immunogenic following low dose administration, with anti-SARS-CoV-2 immune responses comparable to BNT162b2. These findings support further development of VLPCOV-01 as a COVID-19 booster vaccine and the potential for saRNA vectors as a vaccine platform. FUNDINGSupported by AMED, Grant No. JP21nf0101627.

SELECTION OF CITATIONS
SEARCH DETAIL
...