Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 12(1): 80, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36977682

ABSTRACT

Correlative light-electron microscopy (CLEM) requires the availability of robust probes which are visible both in light and electron microscopy. Here we demonstrate a CLEM approach using small gold nanoparticles as a single probe. Individual gold nanoparticles bound to the epidermal growth factor protein were located with nanometric precision background-free in human cancer cells by light microscopy using resonant four-wave mixing (FWM), and were correlatively mapped with high accuracy to the corresponding transmission electron microscopy images. We used nanoparticles of 10 nm and 5 nm radius, and show a correlation accuracy below 60 nm over an area larger than 10 µm size, without the need for additional fiducial markers. Correlation accuracy was improved to below 40 nm by reducing systematic errors, while the localisation precision is below 10 nm. Polarisation-resolved FWM correlates with nanoparticle shapes, promising for multiplexing by shape recognition in future applications. Owing to the photostability of gold nanoparticles and the applicability of FWM microscopy to living cells, FWM-CLEM opens up a powerful alternative to fluorescence-based methods.

2.
J Exp Bot ; 59(3): 501-20, 2008.
Article in English | MEDLINE | ID: mdl-18079135

ABSTRACT

With the centenary of the first descriptions of 'hypersensitiveness' following pathogenic challenge upon us, it is appropriate to assess our current understanding of the hypersensitive response (HR) form of cell death. In recent decades our understanding of the initiation, associated signalling, and some important proteolytic events linked to the HR has dramatically increased. Genetic approaches are increasingly elucidating the function of the HR initiating resistance genes and there have been extensive analyses of death-associated signals, calcium, reactive oxygen species (ROS), nitric oxide, salicylic acid, and now sphingolipids. At the same time, attempts to draw parallels between mammalian apoptosis and the HR have been largely unsuccessful and it may be better to consider the HR to be a distinctive form of plant cell death. We will consider if the HR form of cell death may occur through metabolic dysfunction in which malfunctioning organelles may play a major role. This review will highlight that although our knowledge of parts of the HR is excellent, a comprehensive molecular model is still to be attained.


Subject(s)
Cell Death/physiology , Plant Diseases/immunology , Plants/immunology
3.
Arch Biochem Biophys ; 456(1): 71-8, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17084376

ABSTRACT

Articular cartilage extracellular matrix imposes a significant transport barrier to albumin, the principal carrier of fatty acids. It has not been previously established whether it also influences the transport of fatty acids important for chondrocyte metabolism. Albumin was labelled with rhodamine-maleimide and bound to NBD-labelled lauric acid. Plugs of fresh equine metacarpal-phalangeal cartilage and subchondral bone were incubated with the complex at 4 degrees C for 2-160 h. The fluorophore distribution was quantified using quantitative microscopy in histological sections. The fluorescence intensity of both fluorophores fell steeply over 300 microm below the articular surface and remained relatively uniform through the mid zone but the ratio of lauric acid to albumin was higher than in the incubation medium. The effective diffusivity of lauric acid in the mid zone was (2.2+/-0.7) x 10(-12) m2 s(-1) (n = 33), higher than that of the carrier albumin, suggesting dissociation in the surface layer. Lauric acid accumulated reversibly at the tidemark.


Subject(s)
Cartilage, Articular/metabolism , Fatty Acids/metabolism , Serum Albumin/metabolism , Animals , Biological Transport, Active/physiology , Horses , In Vitro Techniques
4.
Plant Physiol ; 140(1): 249-62, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16377744

ABSTRACT

Salicylic acid (SA) has been proposed to antagonize jasmonic acid (JA) biosynthesis and signaling. We report, however, that in salicylate hydroxylase-expressing tobacco (Nicotiana tabacum) plants, where SA levels were reduced, JA levels were not elevated during a hypersensitive response elicited by Pseudomonas syringae pv phaseolicola. The effects of cotreatment with various concentrations of SA and JA were assessed in tobacco and Arabidopsis (Arabidopsis thaliana). These suggested that there was a transient synergistic enhancement in the expression of genes associated with either JA (PDF1.2 [defensin] and Thi1.2 [thionin]) or SA (PR1 [PR1a-beta-glucuronidase in tobacco]) signaling when both signals were applied at low (typically 10-100 microm) concentrations. Antagonism was observed at more prolonged treatment times or at higher concentrations. Similar results were also observed when adding the JA precursor, alpha-linolenic acid with SA. Synergic effects on gene expression and plant stress were NPR1- and COI1-dependent, SA- and JA-signaling components, respectively. Electrolyte leakage and Evans blue staining indicated that application of higher concentrations of SA + JA induced plant stress or death and elicited the generation of apoplastic reactive oxygen species. This was indicated by enhancement of hydrogen peroxide-responsive AoPR10-beta-glucuronidase expression, suppression of plant stress/death using catalase, and direct hydrogen peroxide measurements. Our data suggests that the outcomes of JA-SA interactions could be tailored to pathogen/pest attack by the relative concentration of each hormone.


Subject(s)
Arabidopsis/metabolism , Cyclopentanes/pharmacology , Gene Expression Regulation, Plant , Nicotiana/metabolism , Oxidative Stress , Salicylic Acid/pharmacology , Apoptosis , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes/antagonists & inhibitors , Cyclopentanes/metabolism , Dose-Response Relationship, Drug , Drug Synergism , Hydrogen Peroxide/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Oxylipins , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Pseudomonas syringae/metabolism , Reactive Oxygen Species/metabolism , Salicylic Acid/antagonists & inhibitors , Salicylic Acid/metabolism , Signal Transduction , Nicotiana/drug effects , Nicotiana/genetics
5.
J Exp Bot ; 56(422): 3129-36, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16246855

ABSTRACT

It is reported here that salicylic acid (SA) is rapidly taken up by Arabidopsis cells, and its uptake is accompanied by media alkalization and cytosolic acidification, and it is inhibited by the ionophore nigericin, suggesting that its import is linked with that of H+ and driven by a proton gradient. Such import and accumulation declined sharply within a narrow physiological pH range (pH 5.7-6.1), corresponding to a reduction in the [H+] of the media from 1.99 micromol l(-1) to 0.79 micromol l(-1). Following the initial uptake, SA was exported back into the media as free SA against a continued [H+]-dependent import. Since the uptake and accumulation of SA declines sharply within a narrow pH range and cell wall alkalization is an early response during incompatible plant/pathogen interactions, the bacterial elicitor harpin(Pss) was used to investigate how SA transport may be modulated during defence responses. Harpin induced a rapid and sustained alkalization of the cell suspension media, reaching the critical pH (pH 5.9-6.1) at which SA import is inhibited at c. 60 min. Such media alkalization corresponded with a reduction in the SA associated with cells co-treated with harpin, and an inhibition of SA uptake in cells pretreated with harpin. Scavengers of ROS, or compounds which generate H2O2 or NO had little effect on the import or net export of SA, suggesting that media alkalization induced by harpin is sufficient to modulate the kinetics of SA transport.


Subject(s)
Arabidopsis/metabolism , Bacterial Outer Membrane Proteins/pharmacology , Salicylic Acid/metabolism , Alkalies/metabolism , Arabidopsis/cytology , Arabidopsis/drug effects , Cells, Cultured , Hydrogen-Ion Concentration , Kinetics , Protons , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...