Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
2.
J Comp Neurol ; 531(17): 1772-1795, 2023 12.
Article in English | MEDLINE | ID: mdl-37782702

ABSTRACT

Accurate anatomical characterizations are necessary to investigate neural circuitry on a fine scale, but for the rodent claustrum complex (CLCX), this has yet to be fully accomplished. The CLCX is generally considered to comprise two major subdivisions, the claustrum (CL) and the dorsal endopiriform nucleus (DEn), but regional boundaries to these areas are debated. To address this, we conducted a multifaceted analysis of fiber- and cytoarchitecture, genetic marker expression, and connectivity using mice of both sexes, to create a comprehensive guide for identifying and delineating borders to CLCX, including an online reference atlas. Our data indicated four distinct subregions within CLCX, subdividing both CL and DEn into two. Additionally, we conducted brain-wide tracing of inputs to CLCX using a transgenic mouse line. Immunohistochemical staining against myelin basic protein (MBP), parvalbumin (PV), and calbindin (CB) revealed intricate fiber-architectural patterns enabling precise delineations of CLCX and its subregions. Myelinated fibers were abundant dorsally in CL but absent ventrally, whereas PV expressing fibers occupied the entire CL. CB staining revealed a central gap within CL, also visible anterior to the striatum. The Nr2f2, Npsr1, and Cplx3 genes expressed specifically within different subregions of the CLCX, and Rprm helped delineate the CL-insular border. Furthermore, cells in CL projecting to the retrosplenial cortex were located within the myelin sparse area. By combining own experimental data with digitally available datasets of gene expression and input connectivity, we could demonstrate that the proposed delineation scheme allows anchoring of datasets from different origins to a common reference framework.


Mice are a highly tractable model for studying the claustrum complex (CLCX). However, without a consensus on how to delineate the CLCX in rodents, comparing results between studies is challenging. It is therefore important to expand our anatomical knowledge of the CLCX, to match the level of detail needed to study its functional properties. To improve and expand upon preexisting delineation schemes, we used the combinatorial expression of several markers to create a comprehensive guide to delineate the CLCX and its subregions, including an online reference atlas. This anatomical framework will allow researchers to anchor future experimental data into a common reference space. We demonstrated the power of this new structural framework by combining our own experimental data with digitally available data on gene expression and input connectivity of the CLCX.


Subject(s)
Claustrum , Male , Female , Mice , Animals , Claustrum/metabolism , Calbindins/metabolism , Brain/metabolism , Parvalbumins/metabolism , Rodentia/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Adaptor Proteins, Signal Transducing
3.
Front Behav Neurosci ; 16: 902675, 2022.
Article in English | MEDLINE | ID: mdl-35910679

ABSTRACT

Interactions between conspecifics are central to the acquisition of useful memories in the real world. Observational learning, i.e., learning a task by observing the success or failure of others, has been reported in many species, including rodents. However, previous work in rats with NMDA-receptor blockade has shown that even extensive observation of an unexplored space through a clear barrier is not sufficient to generate a stable hippocampal representation of that space. This raises the question of whether rats can learn a spatial task in a purely observed space from watching a conspecific, and if so, does this somehow stabilize their hippocampal representation? To address these questions, we designed an observational spatial task in a two-part environment that is nearly identical to that of the aforementioned electrophysiological study, in which an observer rat watches a demonstrator animal to learn the location of a hidden reward. Our results demonstrate that rats do not need to physically explore an environment to learn a reward location, provided a conspecific demonstrates where it is. We also show that the behavioral memory is not affected by NMDA receptor blockade, suggesting that the spatial representation underlying the behavior has been consolidated by observation alone.

4.
Front Integr Neurosci ; 16: 855071, 2022.
Article in English | MEDLINE | ID: mdl-35669734

ABSTRACT

Current preclinical models of neurodegenerative disease, such as amyotrophic lateral sclerosis (ALS), can significantly benefit from in vitro neuroengineering approaches that enable the selective study and manipulation of neurons, networks, and functional units of interest. Custom-designed compartmentalized microfluidic culture systems enable the co-culture of different relevant cell types in interconnected but fluidically isolated microenvironments. Such systems can thus be applied for ALS disease modeling, as they enable the recapitulation and study of neuromuscular junctions (NMJ) through co-culturing of motor neurons and muscle cells in separate, but interconnected compartments. These in vitro systems are particularly relevant for investigations of mechanistic aspects of the ALS pathological cascade in engineered NMJ, as progressive loss of NMJ functionality may constitute one of the hallmarks of disease related pathology at early onset, in line with the dying back hypothesis. In such models, ability to test whether motor neuron degeneration in ALS starts at the nerve terminal or at the NMJ and retrogradely progresses to the motor neuron cell body largely relies on robust methods for verification of engineered NMJ functionality. In this study, we demonstrate the functionality of engineered NMJs within a microfluidic chip with a differentially perturbable microenvironment using a designer pseudotyped ΔG-rabies virus for retrograde monosynaptic tracing.

5.
Elife ; 102021 03 26.
Article in English | MEDLINE | ID: mdl-33769282

ABSTRACT

The entorhinal cortex, in particular neurons in layer V, allegedly mediate transfer of information from the hippocampus to the neocortex, underlying long-term memory. Recently, this circuit has been shown to comprise a hippocampal output recipient layer Vb and a cortical projecting layer Va. With the use of in vitro electrophysiology in transgenic mice specific for layer Vb, we assessed the presence of the thus necessary connection from layer Vb-to-Va in the functionally distinct medial (MEC) and lateral (LEC) subdivisions; MEC, particularly its dorsal part, processes allocentric spatial information, whereas the corresponding part of LEC processes information representing elements of episodes. Using identical experimental approaches, we show that connections from layer Vb-to-Va neurons are stronger in dorsal LEC compared with dorsal MEC, suggesting different operating principles in these two regions. Although further in vivo experiments are needed, our findings imply a potential difference in how LEC and MEC mediate episodic systems consolidation.


Subject(s)
Entorhinal Cortex/physiology , Memory Consolidation/physiology , Neurons/physiology , Animals , Female , Male , Mice , Mice, Transgenic
6.
J Neurosci Methods ; 357: 109142, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33753126

ABSTRACT

Neural circuits are composed of multitudes of elaborately interconnected cell types. Understanding neural circuit function requires not only cell-specific knowledge of connectivity, but the ability to record and manipulate distinct cell types independently. Recent advances in viral vectors promise the requisite specificity to perform true "circuit-breaking" experiments. However, such new avenues of multiplexed, cell-specific investigation raise new technical issues: one must ensure that both the viral vectors and their transgene payloads do not overlap with each other in both an anatomical and a functional sense. This review describes benefits and issues regarding the use of viral vectors to analyse the function of neural circuits and provides a resource for the design and implementation of such multiplexing experiments.


Subject(s)
Neurons , Optogenetics , Genetic Vectors , Transgenes
7.
Front Neural Circuits ; 15: 806154, 2021.
Article in English | MEDLINE | ID: mdl-35153682

ABSTRACT

All brain functionality arises from the activity in neural circuits in different anatomical regions. These regions contain different circuits comprising unique cell types. An integral part to understanding neural circuits is a full census of the constituent parts, i.e., the neural cell types. This census can be based on different characteristics. Previously combinations of morphology and physiology, gene expression, and chromatin accessibility have been used in various cortical and subcortical regions. This has given an extensive yet incomplete overview of neural cell types. However, these techniques have not been applied to all brain regions. Here we apply single cell analysis of accessible chromatin on two similar but different cortical regions, the medial and the lateral entorhinal cortices. Even though these two regions are anatomically similar, their intrinsic and extrinsic connectivity are different. In 4,136 cells we identify 20 different clusters representing different cell types. As expected, excitatory cells show regionally specific clusters, whereas inhibitory neurons are shared between regions. We find that several deep layer excitatory neuronal cell types as defined by chromatin profile are also shared between the two different regions. Integration with a larger scRNA-seq dataset maintains this shared characteristic for cells in Layer Vb. Interestingly, this layer contains three clusters, two specific to either subregion and one shared between the two. These clusters can be putatively associated with particular functional and anatomical cell types found in this layer. This information is a step forwards into elucidating the cell types within the entorhinal circuit and by extension its functional underpinnings.


Subject(s)
Chromatin , Entorhinal Cortex , Entorhinal Cortex/physiology , Neurons/physiology , Transcriptome
8.
J Neurosci ; 38(45): 9712-9727, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30249791

ABSTRACT

Fan cells in layer II of the lateral entorhinal cortex (LEC) form a main component of the projection to the dentate gyrus, CA3 and CA2 of the hippocampal formation. This projection has a counterpart originating from stellate cells in layer II of the medial entorhinal cortex (MEC). Available evidence suggests that the two pathways carry different information, exemplified by a difference in spatial tuning of cells in LEC and MEC. The grid cell, a prominent position-modulated cell type present in MEC, has been postulated to derive its characteristic hexagonal firing pattern from dominant disynaptic inhibitory connections between hippocampal-projecting stellate cells. Given that grid cells have not been described in LEC, we aim to describe the local synaptic connectivity of fan cells, to explore whether the network architecture is similar to that of the MEC stellate cell. Using a combination of in vitro multicell electrophysiological and optogenetic approaches in acute slices from rodents of either sex, we show that excitatory connectivity between fan cells is very sparse. Fan cells connect preferentially with two distinct types of inhibitory interneurons, suggesting disynaptic inhibitory coupling as the main form of communication among fan cells. These principles are similar to those reported for stellate cells in MEC, indicating an overall comparable local circuit architecture of the main hippocampal-projecting cell types in the lateral and medial entorhinal cortex.SIGNIFICANCE STATEMENT Our data provide the first description of the synaptic microcircuit of hippocampal-projecting layer II cells in the lateral entorhinal cortex. We show that these cells make infrequent monosynaptic connections with each other, and that they preferentially communicate through a disynaptic inhibitory network. This is similar to the microcircuit of hippocampal-projecting stellate cells in layer II of the medial entorhinal cortex, but dissimilar to the connectivity observed in layer 2 of neocortex. In medial entorhinal cortex, the observed network structure has been proposed to underlie the firing pattern of grid cells. This opens the possibility that layer II cells in lateral entorhinal cortex exhibit regular firing patterns in an unexplored domain.


Subject(s)
Entorhinal Cortex/cytology , Entorhinal Cortex/physiology , Nerve Net/cytology , Nerve Net/physiology , Neural Inhibition/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Rats , Rats, Long-Evans , Reelin Protein
9.
eNeuro ; 4(5)2017.
Article in English | MEDLINE | ID: mdl-29085897

ABSTRACT

Thiouracil (TU)-tagging is an intersectional method for covalently labeling newly transcribed RNAs within specific cell types. Cell type specificity is generated through targeted transgenic expression of the enzyme uracil phosphoribosyl transferase (UPRT); temporal specificity is generated through a pulse of the modified uracil analog 4TU. This technique has been applied in mouse using a Cre-dependent UPRT transgene, CA>GFPstop>HA-UPRT, to profile RNAs in endothelial cells, but it remained untested whether 4TU can cross the blood-brain barrier (BBB) or whether this transgene can be used to purify neuronal RNAs. Here, we crossed the CA>GFPstop>HA-UPRT transgenic mouse to a Sepw1-cre line to express UPRT in layer 2/3 of visual cortex or to an Nr5a1-cre line to express UPRT in layer 4 of visual cortex. We purified thiol-tagged mRNA from both genotypes at postnatal day (P)12, as well as from wild-type (WT) mice not expressing UPRT (background control). We found that a comparison of Sepw1-purified RNA to WT or Nr5a1-purified RNA allowed us to identify genes enriched in layer 2/3 of visual cortex. Here, we show that Cre-dependent UPRT expression can be used to purify cell type-specific mRNA from the intact mouse brain and provide the first evidence that 4TU can cross the BBB to label RNA in vivo.


Subject(s)
Gene Expression Profiling/methods , Mice, Transgenic , Neurons/metabolism , Thiouracil , Visual Cortex/growth & development , Visual Cortex/metabolism , Animals , Dermoscopy , Female , Gene Expression Regulation, Developmental , Immunohistochemistry , In Situ Hybridization , Male , Neurons/cytology , RNA, Messenger/metabolism , Transcriptome , Visual Cortex/cytology
10.
Neuron ; 93(6): 1480-1492.e6, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28334610

ABSTRACT

The spatial receptive fields of neurons in medial entorhinal cortex layer II (MECII) and in the hippocampus suggest general and environment-specific maps of space, respectively. However, the relationship between these receptive fields remains unclear. We reversibly manipulated the activity of MECII neurons via chemogenetic receptors and compared the changes in downstream hippocampal place cells to those of neurons in MEC. Depolarization of MECII impaired spatial memory and elicited drastic changes in CA1 place cells in a familiar environment, similar to those seen during remapping between distinct environments, while hyperpolarization did not. In contrast, both manipulations altered the firing rate of MEC neurons without changing their firing locations. Interestingly, only depolarization caused significant changes in the relative firing rates of individual grid fields, reconfiguring the spatial input from MEC. This suggests a novel mechanism of hippocampal remapping whereby rate changes in MEC neurons lead to locational changes of hippocampal place fields.


Subject(s)
CA1 Region, Hippocampal/physiology , Entorhinal Cortex/physiology , Grid Cells/physiology , Place Cells/physiology , Action Potentials/physiology , Animals , Female , Male , Maze Learning/physiology , Mice , Mice, Transgenic , Neural Inhibition/physiology , Neurons/physiology , Space Perception/physiology , Spatial Memory/physiology
11.
Learn Mem ; 21(10): 506-18, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25225296

ABSTRACT

Understanding the neural mechanisms underlying learning and memory in the entorhinal-hippocampal circuit is a central challenge of systems neuroscience. For more than 40 years, electrophysiological recordings in awake, behaving animals have been used to relate the receptive fields of neurons in this circuit to learning and memory. However, the vast majority of such studies are purely observational, as electrical, surgical, and pharmacological circuit manipulations are both challenging and relatively coarse, being unable to distinguish between specific classes of neurons. Recent advances in molecular genetic tools can overcome many of these limitations, enabling unprecedented control over neural activity in behaving animals. Expression of pharmaco- or optogenetic transgenes in cell-type-specific "driver" lines provides unparalleled anatomical and cell-type specificity, especially when delivered by viral complementation. Pharmacogenetic transgenes are specially designed neurotransmitter receptors exclusively activated by otherwise inactive synthetic ligands and have kinetics similar to traditional pharmacology. Optogenetic transgenes use light to control the membrane potential, and thereby operate at the millisecond timescale. Thus, activation of pharmacogenetic transgenes in specific neuronal cell types while recording from other parts of the circuit allows investigation of the role of those neurons in the steady state, whereas optogenetic transgenes allow one to determine the immediate network response.


Subject(s)
Entorhinal Cortex/physiology , Genetic Techniques , Hippocampus/physiology , Learning/physiology , Memory/physiology , Neurons/physiology , Animals , Animals, Genetically Modified , Genetic Vectors , Neuroanatomical Tract-Tracing Techniques/methods , Optogenetics/methods
12.
Curr Biol ; 24(13): 1447-55, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24980499

ABSTRACT

BACKGROUND: Understanding speech in the presence of background noise often becomes increasingly difficult with age. These age-related speech processing deficits reflect impairments in temporal acuity. Gap detection is a model for temporal acuity in speech processing in which a gap inserted in white noise acts as a cue that attenuates subsequent startle responses. Lesion studies have shown that auditory cortex is necessary for the detection of brief gaps, and auditory cortical neurons respond to the end of the gap with a characteristic burst of spikes called the gap termination response (GTR). However, it remains unknown whether and how the GTR plays a causal role in gap detection. We tested this by optogenetically suppressing the activity of somatostatin- or parvalbumin-expressing inhibitory interneurons, or CaMKII-expressing excitatory neurons, in auditory cortex of behaving mice during specific epochs of a gap detection protocol. RESULTS: Suppressing interneuron activity during the postgap interval enhanced gap detection. Suppressing excitatory cells during this interval attenuated gap detection. Suppressing activity preceding the gap had the opposite behavioral effects, whereas prolonged suppression across both intervals had no effect on gap detection. CONCLUSIONS: In addition to confirming cortical involvement, we demonstrate here for the first time a causal relationship between postgap neural activity and perceptual gap detection. Furthermore, our results suggest that gap detection involves an ongoing comparison of pre- and postgap spiking activity. Finally, we propose a simple yet biologically plausible neural circuit that reproduces each of these neural and behavioral results.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Interneurons/metabolism , Models, Neurological , Acoustic Stimulation , Analysis of Variance , Animals , Mice , Mice, Inbred C57BL , Optogenetics , Parvalbumins/metabolism , Somatostatin/metabolism , Time Factors
13.
Nat Rev Neurosci ; 15(7): 466-81, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24917300

ABSTRACT

One of the grand challenges in neuroscience is to comprehend neural computation in the association cortices, the parts of the cortex that have shown the largest expansion and differentiation during mammalian evolution and that are thought to contribute profoundly to the emergence of advanced cognition in humans. In this Review, we use grid cells in the medial entorhinal cortex as a gateway to understand network computation at a stage of cortical processing in which firing patterns are shaped not primarily by incoming sensory signals but to a large extent by the intrinsic properties of the local circuit.


Subject(s)
Computational Biology/methods , Entorhinal Cortex/cytology , Entorhinal Cortex/physiology , Nerve Net/cytology , Nerve Net/physiology , Animals , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Computational Biology/trends , Humans
14.
Hippocampus ; 24(8): 1039-51, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24753119

ABSTRACT

As first demonstrated in the patient H.M., the hippocampus is critically involved in forming episodic memories, the recall of "what" happened "where" and "when." In rodents, the clearest functional correlate of hippocampal primary neurons is the place field: a cell fires predominantly when the animal is in a specific part of the environment, typically defined relative to the available visuospatial cues. However, rodents have relatively poor visual acuity. Furthermore, they are highly adept at navigating in total darkness. This raises the question of how other sensory modalities might contribute to a hippocampal representation of an environment. Rodents have a highly developed olfactory system, suggesting that cues such as odor trails may be important. To test this, we familiarized mice to a visually cued environment over a number of days while maintaining odor cues. During familiarization, self-generated odor cues unique to each animal were collected by re-using absorbent paperboard flooring from one session to the next. Visual and odor cues were then put in conflict by counter-rotating the recording arena and the flooring. Perhaps surprisingly, place fields seemed to follow the visual cue rotation exclusively, raising the question of whether olfactory cues have any influence at all on a hippocampal spatial representation. However, subsequent removal of the familiar, self-generated odor cues severely disrupted both long-term stability and rotation to visual cues in a novel environment. Our data suggest that odor cues, in the absence of additional rule learning, do not provide a discriminative spatial signal that anchors place fields. Such cues do, however, become integral to the context over time and exert a powerful influence on the stability of its hippocampal representation.


Subject(s)
CA1 Region, Hippocampal/physiology , Cues , Neurons/physiology , Odorants , Olfactory Perception/physiology , Space Perception/physiology , Action Potentials , Animals , Electrodes, Implanted , Male , Mice, Inbred C57BL , Microelectrodes , Photic Stimulation , Rotation , Self Concept , Visual Perception/physiology
15.
J Neurosci ; 33(37): 14889-98, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-24027288

ABSTRACT

The enormous potential of modern molecular neuroanatomical tools lies in their ability to determine the precise connectivity of the neuronal cell types comprising the innate circuitry of the brain. We used transgenically targeted viral tracing to identify the monosynaptic inputs to the projection neurons of layer II of medial entorhinal cortex (MEC-LII) in mice. These neurons are not only major inputs to the hippocampus, the structure most clearly implicated in learning and memory, they also are "grid cells." Here we address the question of what kinds of inputs are specifically targeting these MEC-LII cells. Cell-specific infection of MEC-LII with recombinant rabies virus results in unambiguous labeling of monosynaptic inputs. Furthermore, ratios of labeled neurons in different regions are largely consistent between animals, suggesting that label reflects density of innervation. While the results mostly confirm prior anatomical work, they also reveal a novel major direct input to MEC-LII from hippocampal pyramidal neurons. Interestingly, the vast majority of these direct hippocampal inputs arise not from the major hippocampal subfields of CA1 and CA3, but from area CA2, a region that has historically been thought to merely be a transitional zone between CA3 and CA1. We confirmed this unexpected result using conventional tracing techniques in both rats and mice.


Subject(s)
CA2 Region, Hippocampal/cytology , Entorhinal Cortex/physiology , Neural Pathways/physiology , Animals , Brain Mapping , CA2 Region, Hippocampal/physiology , Cell Count , Entorhinal Cortex/cytology , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Transgenic , Rabies virus/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
16.
J Neurosci ; 32(16): 5598-608, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22514321

ABSTRACT

Damage to the hippocampal formation results in a profound temporally graded retrograde amnesia, implying that it is necessary for memory acquisition but not its long-term storage. It is therefore thought that memories are transferred from the hippocampus to the cortex for long-term storage in a process called systems consolidation (Dudai and Morris, 2000). Where in the cortex this occurs remains an open question. Recent work (Frankland et al., 2005; Vetere et al., 2011) suggests the anterior cingulate cortex (ACC) as a likely candidate area, but there is little direct electrophysiological evidence to support this claim. Previously, we demonstrated object-associated firing correlates in caudal ACC during tests of recognition memory and described evidence of neuronal responses to where an object had been following a brief delay. However, long-term memory requires evidence of more durable representations. Here we examined the activity of ACC neurons while testing for long-term memory of an absent object. Mice explored two objects in an arena and then were returned 6 h later with one of the objects removed. Mice continued to explore where the object had been, demonstrating memory for that object. Remarkably, some ACC neurons continued to respond where the object had been, while others developed new responses in the absent object's location. The incidence of absent-object responses by ACC neurons was greatly increased with increased familiarization to the objects, and such responses were still evident 1 month later. These data strongly suggest that the ACC contains neural correlates of consolidated object/place association memory.


Subject(s)
Brain Mapping , Gyrus Cinguli/cytology , Memory, Long-Term/physiology , Neurons/physiology , Recognition, Psychology/physiology , Action Potentials/physiology , Animals , Electromyography , Exploratory Behavior , Gyrus Cinguli/physiology , Learning , Male , Mice , Mice, Inbred C57BL , Space Perception/physiology , Vibrissae/innervation , Vibrissae/physiology
17.
Proc Natl Acad Sci U S A ; 108(35): 14654-8, 2011 Aug 30.
Article in English | MEDLINE | ID: mdl-21852575

ABSTRACT

In humans and other mammals, the hippocampus is critical for episodic memory, the autobiographical record of events, including where and when they happen. When one records from hippocampal pyramidal neurons in awake, behaving rodents, their most obvious firing correlate is the animal's position within a particular environment, earning them the name "place cells." When an animal explores a novel environment, its pyramidal neurons form their spatial receptive fields over a matter of minutes and are generally stable thereafter. This experience-dependent stabilization of place fields is therefore an attractive candidate neural correlate of the formation of hippocampal memory. However, precisely how the animal's experience of a context translates into stable place fields remains largely unclear. For instance, we still do not know whether observation of a space is sufficient to generate a stable hippocampal representation of that space because the animal must physically visit a spot to demonstrate which cells fire there. We circumvented this problem by comparing the relative stability of place fields of directly experienced space from merely observed space following blockade of NMDA receptors, which preferentially destabilizes newly generated place fields. This allowed us to determine whether place cells stably represent parts of the environment the animal sees, but does not actually occupy. We found that the formation of stable place fields clearly requires direct experience with a space. This suggests that place cells are part of an autobiographical record of events and their spatial context, consistent with providing the "where" information in episodic memory.


Subject(s)
Hippocampus/physiology , Animals , Male , Memory , Piperazines/pharmacology , Rats , Rats, Long-Evans , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
18.
J Neurosci ; 30(49): 16509-13, 2010 Dec 08.
Article in English | MEDLINE | ID: mdl-21147990

ABSTRACT

Understanding how neural circuits work requires a detailed knowledge of cellular-level connectivity. Our current understanding of neural circuitry is limited by the constraints of existing tools for transsynaptic tracing. Some of the most intractable problems are a lack of cellular specificity of uptake, transport across multiple synaptic steps conflating direct and indirect inputs, and poor labeling of minor inputs. We used a novel combination of transgenic mouse technology and a recently developed tracing system based on rabies virus (Wickersham et al., 2007a,b) to overcome all three constraints. Because the virus requires transgene expression for both initial infection and subsequent retrograde transsynaptic infection, we created several lines of mice that express these genes in defined cell types using the tetracycline-dependent transactivator system (Mansuy and Bujard, 2000). Fluorescent labeling from viral replication is thereby restricted to defined neuronal cell types and their direct monosynaptic inputs. Because viral replication does not depend on transgene expression, it provides robust amplification of signal in presynaptic neurons regardless of input strength. We injected virus into transgenic crosses expressing the viral transgenes in specific cell types of the hippocampus formation to demonstrate cell-specific infection and monosynaptic retrograde transport of virus, which strongly labels even minor inputs. Such neuron-specific transgenic complementation of recombinant rabies virus holds great promise for obtaining cellular-resolution wiring diagrams of the mammalian CNS.


Subject(s)
Neurons/physiology , Neurons/virology , Rabies virus/genetics , Synapses/physiology , Viral Envelope Proteins/genetics , Animals , Gene Deletion , Gene Expression Regulation, Viral/genetics , Green Fluorescent Proteins/genetics , Hippocampus/cytology , Hippocampus/virology , Mice , Mice, Transgenic , Mutation , RNA, Messenger/metabolism , Recombination, Genetic , Transgenes/physiology , Viral Envelope Proteins/metabolism
19.
PLoS Biol ; 7(6): e1000140, 2009 Jun 30.
Article in English | MEDLINE | ID: mdl-19564903

ABSTRACT

A key question in the analysis of hippocampal memory relates to how attention modulates the encoding and long-term retrieval of spatial and nonspatial representations in this region. To address this question, we recorded from single cells over a period of 5 days in the CA1 region of the dorsal hippocampus while mice acquired one of two goal-oriented tasks. These tasks required the animals to find a hidden food reward by attending to either the visuospatial environment or a particular odor presented in shifting spatial locations. Attention to the visuospatial environment increased the stability of visuospatial representations and phase locking to gamma oscillations--a form of neuronal synchronization thought to underlie the attentional mechanism necessary for processing task-relevant information. Attention to a spatially shifting olfactory cue compromised the stability of place fields and increased the stability of reward-associated odor representations, which were most consistently retrieved during periods of sniffing and digging when animals were restricted to the cup locations. Together, these results suggest that attention selectively modulates the encoding and retrieval of hippocampal representations by enhancing physiological responses to task-relevant information.


Subject(s)
Attention/physiology , Hippocampus/physiology , Olfactory Pathways/physiology , Spatial Behavior/physiology , Action Potentials/physiology , Animals , Cues , Goals , Hippocampus/cytology , Male , Memory , Mice , Mice, Inbred C57BL , Models, Neurological , Odorants , Psychomotor Performance , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Reaction Time/physiology , Reward , Visual Perception/physiology
20.
J Neurophysiol ; 102(4): 2055-68, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19587319

ABSTRACT

The anterior cingulate cortex (ACC) is a component of the limbic system implicated in a wide variety of functions spanning motor and sensory information processing, memory, attention, novelty detection, and comparisons of expectation versus outcome. It remains unclear how much of this functional diversity stems from differences in methodology or interpretation versus truly reflecting the range of processes in which the ACC is involved. In the present study, ACC neuronal activity was examined in freely behaving mice (C57BL6/J) under conditions allowing investigation of many of the cited functions in conditions free from externally applied rules: tests of novel object and novel location recognition memory. Behavioral activity and neuronal activity were recorded first in the open field, during the initial exposure and subsequent familiarization to two identical objects, and finally during the recognition memory tests. No discernible stable firing correlates of ACC neurons were found in the open field, but the addition of objects led to lasting changes in the firing patterns of many ACC neurons around one or both of the object locations. During the novel location test, some neurons followed the familiar object to its new location, others fired exclusively where the object had been, and yet others fired to both current and former object locations. Many of these same features were observed during tests of object recognition memory. However, the magnitude of the neuronal preference for the novel or the familiar object was markedly greater than that observed during either the tests of location recognition or novel object preferences in animals that did not exhibit the expected behavior. The present study reveals, for the first time, single-neuron correlates of object and location recognition behaviors in the rodent ACC and suggests that neurons of the ACC provide a distributed representation of all of the salient features of a task.


Subject(s)
Gyrus Cinguli/physiology , Neurons/physiology , Pattern Recognition, Physiological/physiology , Recognition, Psychology/physiology , Action Potentials , Animals , Male , Mice , Mice, Inbred C57BL , Microelectrodes , Neuropsychological Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...