Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(6): 1234-1246.e7, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38417444

ABSTRACT

High intra-specific genetic diversity is associated with adaptive potential, which is key for resilience to global change. However, high variation may also support deleterious alleles through genetic load, thereby increasing the risk of inbreeding depression if population sizes decrease. Purging of deleterious variation has been demonstrated in some threatened species. However, less is known about the costs of declines and inbreeding in species with large population sizes and high genetic diversity even though this encompasses many species globally that are expected to undergo population declines. Caribou is a species of ecological and cultural significance in North America with a wide distribution supporting extensive phenotypic variation but with some populations undergoing significant declines resulting in their at-risk status in Canada. We assessed intra-specific genetic variation, adaptive divergence, inbreeding, and genetic load across populations with different demographic histories using an annotated chromosome-scale reference genome and 66 whole-genome sequences. We found high genetic diversity and nine phylogenomic lineages across the continent with adaptive diversification of genes, but also high genetic load among lineages. We found highly divergent levels of inbreeding across individuals, including the loss of alleles by drift but not increased purging in inbred individuals, which had more homozygous deleterious alleles. We also found comparable frequencies of homozygous deleterious alleles between lineages regardless of nucleotide diversity. Thus, further inbreeding may need to be mitigated through conservation efforts. Our results highlight the "double-edged sword" of genetic diversity that may be representative of other species atrisk affected by anthropogenic activities.


Subject(s)
Genetics, Population , Reindeer , Humans , Animals , Genetic Load , Inbreeding , Population Dynamics , Genetic Variation
2.
Mol Ecol Resour ; 24(3): e13929, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38289068

ABSTRACT

Accurate and efficient microsatellite loci genotyping is an essential process in population genetics that is also used in various demographic analyses. Protocols for next-generation sequencing of microsatellite loci enable high-throughput and cross-compatible allele scoring, common issues that are not addressed by conventional capillary-based approaches. To improve this process, we have developed an all-in-one software, called Seq2Sat (sequence to microsatellite), in C++ to support automated microsatellite genotyping. It directly takes raw reads of microsatellite amplicons and conducts read quality control before inferring genotypes based on depth-of-read, read ratio, sequence composition and length. We have also developed a module for sex identification based on sex chromosome-specific locus amplicons. To allow for greater user access and complement autoscoring, we developed SatAnalyzer (microsatellite analyzer), a user-friendly web-based platform that conducts reads-to-report analyses by calling Seq2Sat for genotype autoscoring and produces interactive genotype graphs for manual editing. SatAnalyzer also allows users to troubleshoot multiplex optimization by analysing read quality and distribution across loci and samples in support of high-quality library preparation. To evaluate its performance, we benchmarked our toolkit Seq2Sat/SatAnalyzer against a conventional capillary gel method and existing microsatellite genotyping software, MEGASAT, using two datasets. Results showed that SatAnalyzer can achieve >99.70% genotyping accuracy and Seq2Sat is ~5 times faster than MEGASAT despite many more informative tables and figures being generated. Seq2Sat and SatAnalyzer are freely available on github (https://github.com/ecogenomicscanada/Seq2Sat) and dockerhub (https://hub.docker.com/r/rocpengliu/satanalyzer).


Subject(s)
Genetics, Population , Software , Genotype , Alleles , High-Throughput Nucleotide Sequencing/methods , Microsatellite Repeats , Genotyping Techniques/methods , Sequence Analysis, DNA/methods
3.
Ecol Evol ; 13(7): e10278, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37424935

ABSTRACT

Caribou (Rangifer tarandus) have experienced dramatic declines in both range and population size across Canada over the past century. Boreal caribou (R. t. caribou), 1 of the 12 Designatable Units, has lost approximately half of its historic range in the last 150 years, particularly along the southern edge of its distribution. Despite this overall northward contraction, some populations have persisted at the trailing range edge, over 150 km south of the continuous boreal caribou range in Ontario, along the coast and nearshore islands of Lake Superior. The population history of caribou along Lake Superior remains unclear. It appears that these caribou likely represent a remnant distribution at the trailing edge of the receding population of boreal caribou, but they may also exhibit local adaptation to the coastal environment. A better understanding of the population structure and history of caribou along Lake Superior is important for their conservation and management. Here, we use high-coverage whole genomes (N = 20) from boreal, eastern migratory, and barren-ground caribou sampled in Manitoba, Ontario, and Quebec to investigate population structure and inbreeding histories. We discovered that caribou from the Lake Superior range form a distinct group but also found some evidence of gene flow with the continuous boreal caribou range. Notably, caribou along Lake Superior demonstrated relatively high levels of inbreeding (measured as runs of homozygosity; ROH) and genetic drift, which may contribute to the differentiation observed between ranges. Despite inbreeding, caribou along Lake Superior retained high heterozygosity, particularly in genomic regions without ROH. These results suggest that they present distinct genomic characteristics but also some level of gene flow with the continuous range. Our study provides key insights into the genomics of the southernmost range of caribou in Ontario, beginning to unravel the evolutionary history of these small, isolated caribou populations.

4.
G3 (Bethesda) ; 12(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34788821

ABSTRACT

Northern (Glaucomys sabrinus) and southern (Glaucomys volans) flying squirrels are widespread species distributed across North America. Northern flying squirrels are common inhabitants of the boreal forest, also occurring in coniferous forest remnants farther south, whereas the southern flying squirrel range is centered in eastern temperate woodlands. These two flying squirrel species exhibit a hybrid zone across a latitudinal gradient in an area of recent secondary contact. Glaucomys hybrid offspring are viable and can successfully backcross with either parental species, however, the fitness implications of such events are currently unknown. Some populations of G. sabrinus are endangered, and thus, interspecific hybridization is a key conservation concern in flying squirrels. To provide a resource for future studies to evaluate hybridization and possible introgression, we sequenced and assembled a de novo long-read genome from a G. volans individual sampled in southern Ontario, Canada, while four short-read genomes (two G. sabrinus and two G. volans, all from Ontario) were resequenced on Illumina platforms. The final genome assembly consisted of approximately 2.40 Gb with a scaffold N50 of 455.26 Kb. Benchmarking Universal Single-Copy Orthologs reconstructed 3,742 (91.2%) complete mammalian genes and genome annotation using RNA-Seq identified the locations of 19,124 protein-coding genes. The four short-read individuals were aligned to our reference genome to investigate the demographic history of the two species. A principal component analysis clearly separated resequenced individuals, while inferring population size history using the Pairwise Sequentially Markovian Coalescent model noted an approximate species split 1 million years ago, and a single, possibly recently introgressed individual.


Subject(s)
Sciuridae , Animals , Genome , North America , Sciuridae/genetics
5.
Mol Ecol ; 29(15): 2793-2809, 2020 08.
Article in English | MEDLINE | ID: mdl-32567754

ABSTRACT

Parallel evolution can occur through selection on novel mutations, standing genetic variation or adaptive introgression. Uncovering parallelism and introgressed populations can complicate management of threatened species as parallelism may have influenced conservation unit designations and admixed populations are not generally considered under legislations. We examined high coverage whole-genome sequences of 30 caribou (Rangifer tarandus) from across North America and Greenland, representing divergent intraspecific lineages, to investigate parallelism and levels of introgression contributing to the formation of ecotypes. Caribou are split into four subspecies and 11 extant conservation units, known as designatable units (DUs), in Canada. Using genomes from all four subspecies and six DUs, we undertake demographic reconstruction and confirm two previously inferred instances of parallel evolution in the woodland subspecies and uncover an additional instance of parallelism of the eastern migratory ecotype. Detailed investigations reveal introgression in the woodland subspecies, with introgressed regions found spread throughout the genomes encompassing both neutral and functional sites. Our investigations using whole genomes highlight the difficulties in unequivocally demonstrating parallelism through adaptive introgression in nonmodel species with complex demographic histories, with standing variation and introgression both potentially involved. Additionally, the impact of parallelism and introgression on conservation policy for management units needs to be considered in general, and the caribou designations will need amending in light of our results. Uncovering and decoupling parallelism and differential patterns of introgression will become prevalent with the availability of comprehensive genomic data from nonmodel species, and we highlight the need to incorporate this into conservation unit designations.


Subject(s)
Ecotype , Genetics, Population , Canada , Greenland , North America
SELECTION OF CITATIONS
SEARCH DETAIL
...