Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 104(47): 18730-5, 2007 Nov 20.
Article in English | MEDLINE | ID: mdl-18000048

ABSTRACT

Fungi in the genus Malassezia are ubiquitous skin residents of humans and other warm-blooded animals. Malassezia are involved in disorders including dandruff and seborrheic dermatitis, which together affect >50% of humans. Despite the importance of Malassezia in common skin diseases, remarkably little is known at the molecular level. We describe the genome, secretory proteome, and expression of selected genes of Malassezia globosa. Further, we report a comparative survey of the genome and secretory proteome of Malassezia restricta, a close relative implicated in similar skin disorders. Adaptation to the skin environment and associated pathogenicity may be due to unique metabolic limitations and capabilities. For example, the lipid dependence of M. globosa can be explained by the apparent absence of a fatty acid synthase gene. The inability to synthesize fatty acids may be complemented by the presence of multiple secreted lipases to aid in harvesting host lipids. In addition, an abundance of genes encoding secreted hydrolases (e.g., lipases, phospholipases, aspartyl proteases, and acid sphingomyelinases) was found in the M. globosa genome. In contrast, the phylogenetically closely related plant pathogen Ustilago maydis encodes a different arsenal of extracellular hydrolases with more copies of glycosyl hydrolase genes. M. globosa shares a similar arsenal of extracellular hydrolases with the phylogenetically distant human pathogen, Candida albicans, which occupies a similar niche, indicating the importance of host-specific adaptation. The M. globosa genome sequence also revealed the presence of mating-type genes, providing an indication that Malassezia may be capable of sex.


Subject(s)
Genome, Fungal/genetics , Malassezia/genetics , Malassezia/pathogenicity , Mycoses , Plant Diseases , Animals , Enzymes/classification , Enzymes/genetics , Enzymes/metabolism , Gene Expression Regulation, Fungal , Humans , Malassezia/classification , Malassezia/enzymology , Molecular Sequence Data , Multigene Family , Phylogeny , Virulence
2.
J Invest Dermatol ; 127(9): 2138-46, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17460728

ABSTRACT

Dandruff and seborrheic dermatitis (D/SD) are common hyperproliferative scalp disorders with a similar etiology. Both result, in part, from metabolic activity of Malassezia globosa and Malassezia restricta, commensal basidiomycete yeasts commonly found on human scalps. Current hypotheses about the mechanism of D/SD include Malassezia-induced fatty acid metabolism, particularly lipase-mediated breakdown of sebaceous lipids and release of irritating free fatty acids. We report that lipase activity was detected in four species of Malassezia, including M. globosa. We isolated lipase activity by washing M. globosa cells. The isolated lipase was active against diolein, but not triolein. In contrast, intact cells showed lipase activity against both substrates, suggesting the presence of at least another lipase. The diglyceride-hydrolyzing lipase was purified from the extract, and much of its sequence was determined by peptide sequencing. The corresponding lipase gene (LIP1) was cloned and sequenced. Confirmation that LIP1 encoded a functional lipase was obtained using a covalent lipase inhibitor. LIP1 was differentially expressed in vitro. Expression was detected on three out of five human scalps, as indicated by reverse transcription-PCR. This is the first step in a molecular description of lipid metabolism on the scalp, ultimately leading toward a test of its role in D/SD etiology.


Subject(s)
Fungal Proteins/metabolism , Gene Expression Regulation, Enzymologic , Lipase/genetics , Lipase/metabolism , Malassezia/enzymology , Scalp/microbiology , Cloning, Molecular , Diglycerides/chemistry , Gene Expression Regulation, Fungal , Glycerides/chemistry , Humans , Lipids/chemistry , Models, Biological , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Triolein/chemistry
3.
Article in English | MEDLINE | ID: mdl-16046800

ABSTRACT

Many laboratories identify proteins by searching tandem mass spectrometry data against genomic or protein sequence databases. These database searches typically use the measured peptide masses or the derived peptide sequence and, in this paper, we focus on the latter. We study the minimum peptide sequence data requirements for definitive protein identification from protein sequence databases. Accurate mass measurements are not needed for definitive protein identification, even when a limited amount of sequence data is available for searching. This information has implications for the mass spectrometry performance (and cost), data base search strategies and proteomics research.


Subject(s)
Mass Spectrometry/methods , Peptide Mapping/methods , Proteins/chemistry , Proteins/isolation & purification , Sequence Analysis, Protein/methods , Proteomics , Reproducibility of Results
5.
Proteomics ; 2(5): 543-50, 2002 May.
Article in English | MEDLINE | ID: mdl-11987128

ABSTRACT

A proteomic analysis was performed comparing normal rat soleus muscle to soleus muscle that had undergone either 0.5, 1, 2, 4, 7, 10 and 14 days of hindlimb suspension-induced atrophy or hindlimb suspension-induced atrophied soleus muscle that had undergone 1 hour, 8 hour, 1 day, 2 day, 4 day and 7 days of reweighting-induced hypertrophy. Muscle mass measurements demonstrated continual loss of soleus mass occurred throughout the 21 days of hindlimb suspension; following reweighting, atrophied soleus muscle mass increased dramatically between 8 hours and 1 day post reweighting. Proteomic analysis of normal and atrophied soleus muscle demonstrated statistically significant changes in the relative levels of 29 soleus proteins. Reweighting following atrophy demonstrated statistically significant changes in the relative levels of 15 soleus proteins. Protein identification using mass spectrometry was attempted for all differentially regulated proteins from both atrophied and hypertrophied soleus muscle. Five differentially regulated proteins from the hindlimb suspended atrophied soleus muscle were identified while five proteins were identified in the reweighting-induced hypertrophied soleus muscles. The identified proteins could be generally grouped together as metabolic proteins, chaperone proteins and contractile apparatus proteins. Together these data demonstrate that coordinated temporally regulated changes in the skeletal muscle proteome occur during disuse-induced soleus muscle atrophy and reweighting hypertrophy.


Subject(s)
Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Proteome/analysis , Amino Acid Sequence , Animals , Atrophy , Hindlimb Suspension , Hypertrophy , Molecular Sequence Data , Muscle, Skeletal/pathology , Peptide Fragments/analysis , Rats
6.
Article in English | MEDLINE | ID: mdl-11996498

ABSTRACT

A proteomic analysis was performed comparing normal slow twitch type fiber rat soleus muscle and normal fast twitch type fiber tibialis anterior muscle to immobilized soleus and tibialis anterior muscles at 0.5, 1, 2, 4, 6, 8 and 10 days post immobilization. Muscle mass measurements demonstrate mass changes throughout the period of immobilization. Proteomic analysis of normal and atrophied soleus muscle demonstrated statistically significant changes in the relative levels of 17 proteins. Proteomic analysis of normal and atrophied tibialis anterior muscle demonstrated statistically significant changes in the relative levels of 45 proteins. Protein identification using mass spectrometry was attempted for all differentially regulated proteins from both soleus and tibialis anterior muscles. Four differentially regulated soleus proteins and six differentially regulated tibialis anterior proteins were identified. The identified proteins can be grouped according to function as metabolic proteins, chaperone proteins, and contractile apparatus proteins. Together these data demonstrate that coordinated temporally regulated changes in the proteome occur during immobilization-induced atrophy in both slow twitch and fast twitch fiber type skeletal muscle.


Subject(s)
Hindlimb Suspension , Muscle Proteins/analysis , Muscle, Skeletal/chemistry , Proteome , Amino Acid Sequence , Animals , Mass Spectrometry , Molecular Sequence Data , Muscle Proteins/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...