Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Model Mech ; 15(5)2022 05 01.
Article in English | MEDLINE | ID: mdl-35363276

ABSTRACT

Recent studies have indicated that some phenotypes caused by decreased function of select neurodevelopmental disorder (NDD) risk genes can be reversed by restoring gene function in adulthood. However, few of the hundreds of risk genes have been assessed for adult phenotypic reversibility. We developed a strategy to rapidly assess the temporal requirements and phenotypic reversibility of NDD risk gene orthologs using a conditional protein degradation system and machine-vision phenotypic profiling in Caenorhabditis elegans. We measured how degrading and re-expressing orthologs of EBF3, BRN3A and DYNC1H1 at multiple periods throughout development affect 30 morphological, locomotor, sensory and learning phenotypes. We found that phenotypic reversibility was possible for each gene studied. However, the temporal requirements of gene function and degree of rescue varied by gene and phenotype. This work highlights the critical need to assess multiple windows of degradation and re-expression and a large number of phenotypes to understand the many roles a gene can have across the lifespan. This work also demonstrates the benefits of using a high-throughput model system to prioritize NDD risk genes for re-expression studies in other organisms.


Subject(s)
Caenorhabditis elegans Proteins , Neurodevelopmental Disorders , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Longevity , Neurodevelopmental Disorders/genetics , Phenotype
3.
Neurobiol Learn Mem ; 171: 107208, 2020 05.
Article in English | MEDLINE | ID: mdl-32147587

ABSTRACT

Alterations in habituation, a highly conserved form of non-associative learning, are suspected to contribute to a range of the complex behavioural phenotypes present in multiple neurodevelopmental disorders. While progress has been made in understanding the genetics of these disorders through the application of next-generation sequencing and related technologies, the pathogenicity of genetic variants and causes of learning and memory impairments can be difficult to determine from sequencing data alone. High-throughput genetic model organisms such as the roundworm Caenorhabditis elegans, fruit fly Drosophila melanogaster, and zebrafish Danio rerio offer low-cost and efficient methods to investigate the functions of identified neurodevelopmental disorder risk genes and the functional consequences of specific disorder-associated variants. Here, we review ways assessing habituation has been used in the genotype-first approach to first validate neurodevelopmental disorder candidate genes and now to systematically characterize large candidate gene lists. We then discuss exciting ways habituation, in combination with other techniques, can be used as a tool to assess the pathogenicity of putative genes and genetic variants, uncover and confirm molecular networks, and identify potential therapeutic avenues.


Subject(s)
Habituation, Psychophysiologic/physiology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Animals , Caenorhabditis elegans , Disease Models, Animal , Drosophila melanogaster , Organisms, Genetically Modified , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...