Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Graph Model ; 119: 108379, 2023 03.
Article in English | MEDLINE | ID: mdl-36481587

ABSTRACT

The binding affinity of the SARS-CoV-2 spike (S)-protein to the human membrane protein ACE2 is critical for virus function. Computational structure-based screening of new S-protein mutations for ACE2 binding lends promise to rationalize virus function directly from protein structure and ideally aid early detection of potentially concerning variants. We used a computational protocol based on cryo-electron microscopy structures of the S-protein to estimate the change in ACE2-affinity due to S-protein mutation (ΔΔGbind) in good trend agreement with experimental ACE2 affinities. We then expanded predictions to all possible S-protein mutations in 21 different S-protein-ACE2 complexes (400,000 ΔΔGbind data points in total), using mutation group comparisons to reduce systematic errors. The results suggest that mutations that have arisen in major variants as a group maintain ACE2 affinity significantly more than random mutations in the total protein, at the interface, and at evolvable sites. Omicron mutations as a group had a modest change in binding affinity compared to mutations in other major variants. The single-mutation effects seem consistent with ACE2 binding being optimized and maintained in omicron, despite increased importance of other selection pressures (antigenic drift), however, epistasis, glycosylation and in vivo conditions will modulate these effects. Computational prediction of SARS-CoV-2 evolution remains far from achieved, but the feasibility of large-scale computation is substantially aided by using many structures and mutation groups rather than single mutation effects, which are very uncertain. Our results demonstrate substantial challenges but indicate ways forward to improve the quality of computer models for assessing SARS-CoV-2 mutation effects.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Cryoelectron Microscopy , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Hydrolases , Mutation , Protein Binding
2.
Front Neurol ; 13: 890203, 2022.
Article in English | MEDLINE | ID: mdl-35711269

ABSTRACT

Amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) are neurodegenerations with evolutionary underpinnings, expansive clinical presentations, and multiple genetic risk factors involving a complex network of pathways. This perspective considers the complex cellular pathology of aging motoneuronal and frontal/prefrontal cortical networks in the context of evolutionary, clinical, and biochemical features of the disease. We emphasize the importance of evolution in the development of the higher cortical function, within the influence of increasing lifespan. Particularly, the role of aging on the metabolic competence of delicately optimized neurons, age-related increased proteostatic costs, and specific genetic risk factors that gradually reduce the energy available for neuronal function leading to neuronal failure and disease.

3.
J Alzheimers Dis ; 55(2): 447-457, 2017.
Article in English | MEDLINE | ID: mdl-27662304

ABSTRACT

The inability to effectively halt or cure Alzheimer's disease (AD), exacerbated by the recent failures of high-profile clinical trials, emphasizes the urgent need to understand the complex biochemistry of this major neurodegenerative disease. In this paper, ten central, current challenges of the major paradigm in the field, the amyloid hypothesis, are sharply formulated. These challenges together show that new approaches are necessary that address data heterogeneity, increase focus on the proteome level, use available human patient data more actively, account for the aging phenotype as a background model of the disease, unify our understanding of the interplay between genetic and non-genetic risk factors, and combine into one framework both the familial and sporadic forms of the disease.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid/genetics , Genetic Heterogeneity , Models, Biological , Aging , Amyloid/metabolism , Amyloid beta-Peptides/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...