Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 34(1): 105-110, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36595299

ABSTRACT

The development of new types of bonds and linkages that can reversibly tune the geometry and structural features of molecules is an elusive goal in chemistry. Herein, we report the use of catenated DNA structures as nanolinkages that can reversibly switch their angle and form different kinds of polygonal nanostructures. We designed a reconfigurable catenane that can self-assemble into a triangular or hexagonal structure upon addition of programmable DNA strands that function via toehold strand-displacement. The nanomechanical and structural features of these catenated nanojoints can be applied for the construction of dynamic systems such as molecular motors with switchable functionalities.


Subject(s)
DNA, Catenated , Nanostructures , Nanostructures/chemistry , DNA/chemistry
2.
Angew Chem Int Ed Engl ; 59(30): 12455-12459, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32567796

ABSTRACT

The ability to precisely measure and monitor temperature at high resolution at the nanoscale is an important task for better understanding the thermodynamic properties of functional entities at the nanoscale in complex systems, or at the level of a single cell. However, the development of high-resolution and robust thermal nanosensors is challenging. The design, assembly, and characterization of a group of thermal-responsive deoxyribonucleic acid (DNA) joints, consisting of two interlocked double-stranded DNA (dsDNA) rings, is described. The DNA nanojoints reversibly switch between the static and mobile state at different temperatures without a special annealing process. The temperature response range of the DNA nanojoint can be easily tuned by changing the length or the sequence of the hybridized region in its structure, and because of its interlocked structure the temperature response range of the DNA nanojoint is largely unaffected by its own concentration; this contrasts with systems that consist of separated components.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Temperature , Fluorescent Dyes/chemistry , Microscopy, Atomic Force , Native Polyacrylamide Gel Electrophoresis , Thermodynamics
3.
Nat Protoc ; 14(10): 2818-2855, 2019 10.
Article in English | MEDLINE | ID: mdl-31511665

ABSTRACT

Mechanically interlocked DNA nanostructures are useful as flexible entities for operating DNA-based nanomachines. Interlocked structures made of double-stranded (ds) DNA components can be constructed by irreversibly threading them through one another to mechanically link them. The interlocked components thus remain bound to one another while still permitting large-amplitude motion about the mechanical bond. The construction of interlocked dsDNA architectures is challenging because it usually involves the synthesis and modification of small dsDNA nanocircles of various sizes, dependent on intrinsically curved DNA. Here we describe the design, generation, purification, and characterization of interlocked dsDNA structures such as catenanes, rotaxanes, and daisy-chain rotaxanes (DCRs). Their construction requires precise control of threading and hybridization of the interlocking components at each step during the assembly process. The protocol details the characterization of these nanostructures with gel electrophoresis and atomic force microscopy (AFM), including acquisition of high-resolution AFM images obtained in intermittent contact mode in liquid. Additional functionality can be conferred on the DNA architectures by incorporating proteins, molecular switches such as photo-switchable azobenzene derivatives, or fluorophores for studying their mechanical behavior by fluorescence quenching or fluorescent resonance energy transfer experiments. These modified interlocked DNA architectures provide access to more complex mechanical devices and nanomachines that can perform a variety of desired functions and operations. The assembly of catenanes can be completed in 2 d, and that of rotaxanes in 3 d. Addition of azobenzene functionality, fluorophores, anchor groups, or the site-specific linkage of proteins to the nanostructure can extend the time line.


Subject(s)
Catenanes/chemistry , DNA/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Nucleic Acid Hybridization/methods , Rotaxanes/chemistry , DNA/chemical synthesis , Light , Microscopy, Atomic Force
4.
Chembiochem ; 17(12): 1146-9, 2016 06 16.
Article in English | MEDLINE | ID: mdl-26972112

ABSTRACT

Interlocked DNA architectures are useful for DNA nanotechnology because of their mechanically bonded components, which can move relative to one another without disassembling. We describe the design, synthesis, and characterization of novel single-stranded tile (SST) stoppers for the assembly of interlocked DNA architectures. SST stoppers are shown to self-assemble into a square-shaped rigid structure upon mixing 97 oligodeoxynucleotide (ODN) strands. The structures are equipped with a sticky end that is designed for hybridization with the sticky ends of a dsDNA axle of a DNA rotaxane. Because the diameter of the macrocycle threaded onto the axle is 14 nm, the dimension of the square-shaped stopper was designed to be bulky enough to prevent the dethreading of the macrocycle. An asymmetric rotaxane with a SST- and a ring-shaped stopper featuring two stations for hybridization of the macrocycle to the axle was assembled. The macrocycle can be directed towards one or the other station upon triggering with fuel ODNs.


Subject(s)
DNA, Single-Stranded/chemistry , Nanostructures/chemistry , Microscopy, Atomic Force , Nucleic Acid Hybridization , Rotaxanes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...