Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(1): e9699, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36620421

ABSTRACT

Harsh environmental conditions in form of low food availability for both offspring and parents alike can affect breeding behavior and success. There has been evidence that food scarce environments can induce competition between family members, and this might be intensified when parents are caring as a pair and not alone. On the other hand, it is possible that a harsh, food-poor environment could also promote cooperative behaviors within a family, leading, for example, to a higher breeding success of pairs than of single parents. We studied the influence of a harsh nutritional environment on the fitness outcome of family living in the burying beetle Nicrophorus vespilloides. These beetles use vertebrate carcasses for reproduction. We manipulated food availability on two levels: before and during breeding. We then compared the effect of these manipulations in broods with either single females or biparentally breeding males and females. We show that pairs of beetles that experienced a food-poor environment before breeding consumed a higher quantity of the carcass than well-fed pairs or single females. Nevertheless, they were more successful in raising a brood with higher larval survival compared to pairs that did not experience a food shortage before breeding. We also show that food availability during breeding and social condition had independent effects on the mass of the broods raised, with lighter broods in biparental families than in uniparental ones and on smaller carcasses. Our study thus indicates that a harsh nutritional environment can increase both cooperative as well as competitive interactions between family members. Moreover, our results suggest that it can either hamper or drive the formation of a family because parents choose to restrain reproductive investment in a current brood or are encouraged to breed in a food-poor environment, depending on former experiences and their own nutritional status.

2.
Ecol Evol ; 10(7): 3535-3543, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32274007

ABSTRACT

The sharing of the same food source among parents and offspring can be a driver of the evolution of family life and parental care. However, if all family members desire the same meal, competitive situations can arise, especially if resource depletion is likely. When food is shared for reproduction and the raising of offspring, parents have to decide whether they should invest in self-maintenance or in their offspring and it is not entirely clear how these two strategies are balanced. In the burying beetle Nicrophorus vespilloides, parents care for their offspring either bi- or uniparentally at a vertebrate carcass as the sole food source. The question of whether biparental care in this species offers the offspring a better environment for development compared with uniparental care has been the subject of some debate. We tested the hypothesis that male contribution to biparental brood care has a beneficial effect on offspring fitness but that this effect can be masked because the male also feeds from the shared resource. We show that a mouse carcass prepared by two Nicrophorus beetles is lighter compared with a carcass prepared by a single female beetle at the start of larval hatching and provisioning. This difference in carcass mass can influence offspring fitness when food availability is limited, supporting our hypothesis. Our results provide new insights into the possible evolutionary pathway of biparental care in this species of burying beetles.

3.
J Evol Biol ; 31(6): 822-832, 2018 06.
Article in English | MEDLINE | ID: mdl-29573021

ABSTRACT

Parental care is thought to be costly, as it consumes time and energy. Such costs might be reduced in animal parents that raise their young on valuable food sources such as dung or carcasses, as parents are able to invest in self-maintenance by feeding from the same resource. However, this might lower the nutritional value for other family members and, as a consequence, food competition might arise. To promote our understanding of the outcome of such competition, we manipulated the necessity of parents to feed from the resource. Using a full factorial design, we paired food-deprived or well-fed males with food-deprived or well-fed females of burying beetles, which are known to raise their young on vertebrate cadavers. We found that food-deprived parents consumed more of the carrion than those that were well-fed and this had a negative impact on other family members. However, the outcome of the competition depended on the sex of the parents, with females suffering when males fed more and offspring suffering when females fed more. Thus, family life involves selfish elements, as both parents remove resources for the purpose of self-maintenance. However, females show altruistic aspects, as they appear to restrict their food consumption for the benefit of their offspring when paired with a food-deprived male. Interestingly, males extend their stay with the brood when having faced food scarcity prior to reproduction, presumably to replenish their energy reserves. Our study therefore reveals that breeding on shared resources can promote family living, but also results in competition.


Subject(s)
Coleoptera/physiology , Animals , Body Weight , Feeding Behavior/physiology , Female , Food Deprivation , Male
4.
J Chem Ecol ; 43(1): 84-93, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28028746

ABSTRACT

Burying beetles have fascinated scientists for centuries due to their elaborate form of biparental care that includes the burial and defense of a vertebrate carcass, as well as the subsequent feeding of the larvae. However, besides extensive research on burying beetles, one fundamental question has yet to be answered: what cues do males use to discriminate between the sexes? Here, we show in the burying beetle Nicrophorus vespilloides that cuticular lipids trigger male mating behavior. Previous chemical analyses have revealed sex differences in cuticular hydrocarbon (CHC) composition; however, in the current study, fractionated-guided bioassay showed that cuticular lipids, other than CHCs, elicit copulation. Chemical analyses of the behaviorally active fraction revealed 17 compounds, mainly aldehydes and fatty acid esters, with small quantitative but no qualitative differences between the sexes. Supplementation of males with hexadecanal, the compound contributing most to the statistical separation of the chemical profiles of males and females, did not trigger copulation attempts by males. Therefore, a possible explanation is that the whole profile of polar lipids mediates sex recognition in N. vespilloides.


Subject(s)
Coleoptera/metabolism , Coleoptera/physiology , Hydrocarbons/metabolism , Lipid Metabolism , Sex Attractants/metabolism , Sexual Behavior, Animal/physiology , Animals , Female , Hydrocarbons/analysis , Lipids/analysis , Male , Sex Attractants/analysis
5.
Article in English | MEDLINE | ID: mdl-27431445

ABSTRACT

Stingless bees have evolved several ways to share contested resources to ensure the coexistence between different species. Partamona orizabaensis quickly exploits food sources by fast and direct recruitment that does not rely on scent marks deposited on substrates. In this study we show that the flight activity of P. orizabaensis is influenced by weather conditions, with higher activity during periods of colder temperatures, higher relative humidity and even during rainfall. We showed that the outcome of aggression experiments between the non-aggressive species P. orizabaensis and its aggressive competitor Trigona fuscipennis is influenced by the number of bees that arrive early after food source discovery. Therefore, the increased activity during less favorable weather conditions and the fast recruitment of nestmates following the discovery of a food source, as observed for P. orizabaensis, may be adaptations that evolved to coexist even with more aggressive and dominant species of stingless bees, with which P. orizabaensis has to compete for resources.


Subject(s)
Aggression/physiology , Climate , Competitive Behavior/physiology , Feeding Behavior/physiology , Flight, Animal/physiology , Animal Communication , Animals , Bees
6.
Sci Rep ; 6: 29323, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27378180

ABSTRACT

Studies on the evolution of parental care have focused primarily on the costs and benefits of parental care and the life-history attributes that favour it. However, once care evolves, offspring in some taxa appear to become increasingly dependent on their parents. Although offspring dependency is a central theme in family life, the evolutionary dynamics leading to it are not fully understood. Beetles of the genus Nicrophorus are well known for their elaborate biparental care, including provisioning of their young. By manipulating the occurrence of pre- or post-hatching care, we show that the offspring of three burying beetle species, N. orbicollis, N. pustulatus, and N. vespilloides, show striking variation in their reliance on parental care. Our results demonstrate that this variation within one genus arises through a differential dependency of larvae on parental feeding, but not on pre-hatching care. In N. pustulatus, larvae appear to be nutritionally independent of their parents, but in N. orbicollis, larvae do not survive in the absence of parental feeding. We consider evolutionary scenarios by which nutritional dependency may have evolved, highlighting the role of brood size regulation via infanticide in this genus.


Subject(s)
Coleoptera/physiology , Feeding Behavior , Animals , Biological Evolution , Biological Variation, Population
SELECTION OF CITATIONS
SEARCH DETAIL
...