Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Photodiagnosis Photodyn Ther ; 47: 104200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723757

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) is used for the treatment of centrally-located early lung cancers (CLELCs) and is recommended for tumors ≤ 1.0 cm in diameter. We previously reported that PDT using talaporfin sodium, second-generation photosensitizer, for tumors > 1.0 cm but ≤ 2.0 cm in diameter was able to achieve a therapeutic outcome comparable to that of tumors with a diameter of ≤ 1.0 cm. However, the effectiveness of PDT using talaporfin sodium for tumors > 2.0 cm in diameter remains unclear. We conducted a retrospective analysis of cases in which PDT was performed for flat-type CLELCs with tumor diameters of > 2.0 cm. METHODS: We retrospectively analyzed seven cases (eight lesions) with tumor diameters > 2.0 cm and no evidence of extracartilaginous invasion or lymph node metastasis. RESULTS: All the patients underwent multiple PDT sessions. The PDT treatment results over the study period were partial response in one case (14.3 %), stable disease (SD) in three cases (42.9 %), and progressive disease (PD) in three cases (42.9 %). At the time of writing this report, five of seven cases (71.4 %) are still undergoing treatment. The duration of SD-the time from the start of treatment until the criteria for PD were met (SD or better maintained)-ranged from 7 to 52 months (mean, 25.3 months). CONCLUSIONS: "Maintenance PDT" for CLELCs > 2.0 cm in diameter has the potential to inhibit tumor progression in the long term while maintaining quality of life, rather than simply aiming only for a quick radical cure.


Subject(s)
Lung Neoplasms , Photochemotherapy , Photosensitizing Agents , Porphyrins , Humans , Photochemotherapy/methods , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Photosensitizing Agents/therapeutic use , Male , Aged , Female , Retrospective Studies , Middle Aged , Porphyrins/therapeutic use , Aged, 80 and over , Treatment Outcome
2.
J Synchrotron Radiat ; 31(Pt 3): 540-546, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38619289

ABSTRACT

The soft X-ray photoelectron momentum microscopy (PMM) experimental station at the UVSOR Synchrotron Facility has been recently upgraded by additionally guiding vacuum ultraviolet (VUV) light in a normal-incidence configuration. PMM offers a very powerful tool for comprehensive electronic structure analyses in real and momentum spaces. In this work, a VUV beam with variable polarization in the normal-incidence geometry was obtained at the same sample position as the soft X-ray beam from BL6U by branching the VUV beamline BL7U. The valence electronic structure of the Au(111) surface was measured using horizontal and vertical linearly polarized (s-polarized) light excitations from BL7U in addition to horizontal linearly polarized (p-polarized) light excitations from BL6U. Such highly symmetric photoemission geometry with normal incidence offers direct access to atomic orbital information via photon polarization-dependent transition-matrix-element analysis.

3.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-38065145

ABSTRACT

The photoelectron momentum microscope (PMM) in operation at BL6U, an undulator-based soft x-ray beamline at the UVSOR Synchrotron Facility, offers a new approach for µm-scale momentum-resolved photoelectron spectroscopy (MRPES). A key feature of the PMM is that it can very effectively reduce radiation-induced damage by directly projecting a single photoelectron constant energy contour in reciprocal space with a radius of a few Å-1 or real space with a radius of a few 100 µm onto a two-dimensional detector. This approach was applied to three-dimensional valence band structure E(k) and E(r) measurements ("stereography") as functions of photon energy (hν), its polarization (e), detection position (r), and temperature (T). In this study, we described some examples of possible measurement techniques using a soft x-ray PMM. We successfully applied this stereography technique to µm-scale MRPES to selectively visualize the single-domain band structure of twinned face-centered-cubic Ir thin films grown on Al2O3(0001) substrates. The photon energy dependence of the photoelectron intensity on the Au(111) surface state was measured in detail within the bulk Fermi surface. By changing the temperature of 1T-TaS2, we clarified the variations in the valence band dispersion associated with chiral charge-density-wave phase transitions. Finally, PMMs for valence band stereography with various electron analyzers were compared, and the advantages of each were discussed.

4.
Nat Chem ; 15(1): 136-142, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36344816

ABSTRACT

Substituting carbon with silicon in organic molecules and materials has long been an attractive way to modify their electronic structure and properties. Silicon-doped graphene-based materials are known to exhibit exotic properties, yet conjugated organic materials with atomically precise Si substitution have remained difficult to prepare. Here we present the on-surface synthesis of one- and two-dimensional covalent organic frameworks whose backbones contain 1,4-disilabenzene (C4Si2) linkers. Silicon atoms were first deposited on a Au(111) surface, forming a AuSix film on annealing. The subsequent deposition and annealing of a bromo-substituted polyaromatic hydrocarbon precursor (triphenylene or pyrene) on this surface led to the formation of the C4Si2-bridged networks, which were characterized by a combination of high-resolution scanning tunnelling microscopy and photoelectron spectroscopy supported by density functional theory calculations. Each Si in a hexagonal C4Si2 ring was found to be covalently linked to one terminal Br atom. For the linear structure obtained with the pyrene-based precursor, the C4Si2 rings were converted into C4Si pentagonal siloles by further annealing.

5.
J Phys Chem Lett ; 13(6): 1512-1518, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35133154

ABSTRACT

We applied photoemission tomography (PT) to a unique one-dimensional row structure of a picene multilayer realized on an anisotropic Ag(110) surface. Taking advantage of the simplified structure of the multilayer film, we successfully deconvoluted the photoelectron momentum maps of three frontier orbitals of picene. Thereafter, the clearly deconvoluted experimental momentum maps were compared to the Fourier transform simulation of the molecular orbitals of picene in detail, enabling not only the evaluation of the electronic structure of the picene in the multilayer but also the determination of the molecular orientation in the multilayer within a few degrees. In addition, the PT results indicated the orientation of the molecules in all layers to be flat-lying. The successful demonstration of PT of the multilayer molecular film marks an important step toward the wide-range utilization of the PT technique.

6.
J Phys Condens Matter ; 33(47)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34469875

ABSTRACT

The advantages of methylammonium triiodideplumbate (CH3NH3PbI3)-based organic-inorganic hybrid halide perovskite have led to devices with power conversion efficiencies of >20%. The CH3NH3PbI3structure is prone to be more sensitive towards external effects due to its higher flexibility than inorganic counterparts. Nevertheless, a direct photoemission spectroscopy study is still lacking on the density of gap states (DOGS) influenced by air exposure and synchrotron light-induced degradation. In this paper, we investigate the evolution of electronic structure in CH3NH3PbI3single crystals after air exposure and intense synchrotron light irradiation to reveal the effects on its density of states distribution below and above the valence band maximum (VBM) by using ultrahigh-sensitivity photoelectron spectroscopy. We find that the PbI2compounds, decomposed from CH3NH3PbI3after air exposure, could not affect the DOGS distribution but only give the VBM shift in the high binding energy region, which is dramatically different from the impacts of an impurity found for other organic or inorganic counterparts. A further study using intense synchrotron irradiation confirms the decomposed processes for CH3NH3PbI3: (i) the initial degradation would induce the formation of PbI2, which gives a negligible impact on the DOGS above the VBM; (ii) the continuous intense light irradiation could further degrade PbI2to metallic Pb, in which DOGS appears in the energy bandgap.

7.
Adv Mater ; 33(29): e2008677, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34032324

ABSTRACT

Electronic charge rearrangement between components of a heterostructure is the fundamental principle to reach the electronic ground state. It is acknowledged that the density of state distribution of the components governs the amount of charge transfer, but a notable dependence on temperature is not yet considered, particularly for weakly interacting systems. Here, it is experimentally observed that the amount of ground-state charge transfer in a van der Waals heterostructure formed by monolayer MoS2 sandwiched between graphite and a molecular electron acceptor layer increases by a factor of 3 when going from 7 K to room temperature. State-of-the-art electronic structure calculations of the full heterostructure that accounts for nuclear thermal fluctuations reveal intracomponent electron-phonon coupling and intercomponent electronic coupling as the key factors determining the amount of charge transfer. This conclusion is rationalized by a model applicable to multicomponent van der Waals heterostructures.

8.
J Phys Chem Lett ; 12(15): 3773-3778, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33844910

ABSTRACT

The conduction band dispersion in methylammonium lead iodide (CH3NH3PbI3) was studied by both angle-resolved two-photon photoelectron spectroscopy (AR-2PPE) with low photon intensity (∼0.0125 nJ/pulse) and angle-resolved low-energy inverse photoelectron spectroscopy (AR-LEIPS). Clear energy dispersion of the conduction band along the Γ-M direction was first observed by these independent methods under different temperatures, and the dispersion was found to be consistent with band calculation under the cubic phase. The effective mass of the electrons at the Γ point was estimated to be (0.20 ± 0.05)m0 at the temperature of 90 K. The observed conduction band energy was different between the AR-LEIPS and AR-2PPE, which was ascribed to the electronic-correlation-dependent difference of initial and final states probing processes. The present results also indicate that the surface structure in CH3NH3PbI3 provides the cubic-dominated electronic property even at lower temperatures.

9.
Rev Sci Instrum ; 90(9): 093102, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31575223

ABSTRACT

We have developed an acceptance-cone-tunable (ACT) electron spectrometer for the highly efficient constant-energy photoelectron mapping of functional materials. The ACT spectrometer consists of the hemispherical deflection analyzer with the mesh-type electrostatic lens near the sample. The photoelectron trajectory can be converged by applying a negative bias to the sample and grounding the mesh lens and the analyzer entrance. The performance of the present ACT spectrometer with neither rotating nor tilting of the sample is demonstrated by the wide-angle observation of the well-known π-band dispersion of a single crystalline graphite over the Brillouin zone. The acceptance cone of the spectrometer is expanded by a factor of 3.30 when the negative bias voltage is 10 times as high as the kinetic energy of photoelectrons.

10.
Phys Chem Chem Phys ; 21(24): 12730-12747, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31165796

ABSTRACT

Interpreting experimental spectra of thin films of organic semiconductors is challenging, and understanding the relationship between experimental data obtained by different spectroscopic techniques requires a careful consideration of the initial and final states for each process. The discussion of spectroscopic data is frequently mired in confusion that originates in overlapping terminology with however distinct meaning in different spectroscopies. Here, we present a coherent framework that is capable of treating on equal footing most spectroscopies commonly used to investigate thin films of organic semiconductors. We develop a simple model for the expected energy level positions, as obtained by common spectroscopic techniques, and relate them to the energies of molecular states. Molecular charging energies in photoionization processes, as well as adsorption energies and the screening of molecular charges due to environmental polarization, are taken into account as the main causes for shifts of the measured spectroscopic features. We explain the relationship between these quantities, as well as with the transport gap, the optical gap and the exciton binding energy. Our considerations serve as a model for weakly interacting systems, e.g., various organic molecular crystals, where wave function hybridizations between adjacent molecules are negligible.

11.
J Phys Chem Lett ; 10(6): 1312-1318, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30768901

ABSTRACT

Strong intermolecular electronic coupling and well-ordered molecular arrangements enable efficient transport of both charge carriers and excitons in semiconducting π-conjugated molecular solids. Thus, molecular heteroepitaxy to form crystallized donor-acceptor molecular interfaces potentially leads to a novel strategy for creating efficient organic optoelectronic devices via the concomitance of these two requirements. In the present study, the crystallographic and electronic structures of a heteroepitaxial molecular interface, perfluoropentacene (PFP, C22F14) grown on pentacene single crystals (Pn-SCs, C22H14), were determined by means of grazing-incidence X-ray diffraction (GIXD) and angle-resolved ultraviolet photoelectron spectroscopy (ARUPS), respectively. GIXD revealed that PFP uniquely aligned its primary axis along the [11̅0] axis of crystalline pentacene to form well-crystallized overlayers. Valence band dispersion (at least 0.49 eV wide) was successfully resolved by ARUPS. This indicated a significant transfer integral between the frontier molecular orbitals of the nearest-neighbor PFP molecules.

12.
Nat Mater ; 18(3): 242-248, 2019 03.
Article in English | MEDLINE | ID: mdl-30692647

ABSTRACT

Doped organic semiconductors typically exhibit a thermal activation of their electrical conductivity, whose physical origin is still under scientific debate. In this study, we disclose relationships between molecular parameters and the thermal activation energy (EA) of the conductivity, revealing that charge transport is controlled by the properties of host-dopant integer charge transfer complexes (ICTCs) in efficiently doped organic semiconductors. At low doping concentrations, charge transport is limited by the Coulomb binding energy of ICTCs, which can be minimized by systematic modification of the charge distribution on the individual ions. The investigation of a wide variety of material systems reveals that static energetic disorder induced by ICTC dipole moments sets a general lower limit for EA at large doping concentrations. The impact of disorder can be reduced by adjusting the ICTC density and the intramolecular relaxation energy of host ions, allowing an increase of conductivity by many orders of magnitude.

13.
J Phys Chem Lett ; 9(9): 2285-2292, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29664638

ABSTRACT

The structural and photophysical properties of tetradentate Pt(ppzOppz), Pt(ppzOpopy), Pt(ppzOczpy), and Pt(czpyOczpy) have been experimentally and theoretically explored. Single-crystal diffraction measurements provided accurate structural information. Electrochemical and photophysical characterizations revealed internal electronic energy levels in ground and excited states. (Time-dependent) Density functional theory calculation revealed electron distributions in transition processes of S0 → S1 and S1 → T1 → S0. Electronic transition study indicated that Pt(ppzOppz) demonstrated mixed MLCT/LC states and Pt(czpyOczpy) showed MLCT-dominated states in S1 and T1. Both Pt(ppzOpopy) and Pt(ppzOczpy) presented strong delocalized spin transition (DST) during intersystem crossing. Upon frame modification of Pt(ppzOczpy), we found that their S1 and T1 can be independently manipulated. These blue emitters showed a tunable and narrow emission band (the narrowest fwhm was 19 nm) with luminescence efficiency as high as 86%. The findings of the DST transition mode in the neutral Pt(II) complexes provide guidance for rational design of novel phosphorescent materials.

14.
Phys Chem Chem Phys ; 20(10): 6860-6867, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29468242

ABSTRACT

Peptide-based molecular electronic devices are promising due to the large diversity and unique electronic properties of biomolecules. These electronic properties can change considerably with peptide structure, allowing diverse design possibilities. In this work, we explore the effect of the side-chain of the peptide on its electronic properties, by using both experimental and computational tools to detect the electronic energy levels of two model peptides. The peptides include 2Ala and 2Trp as well as their 3-mercaptopropionic acid linker which is used to form monolayers on an Au surface. Specifically, we compare experimental ultraviolet photoemission spectroscopy measurements with density functional theory based computational results. By analyzing differences in frontier energy levels and molecular orbitals between peptides in gas-phase and in a monolayer on gold, we find that the electronic properties of the peptide side-chain are maintained during binding of the peptide to the gold substrate. This indicates that the energy barrier for the peptide electron transport can be tuned by the amino acid compositions, which suggests a route for structural design of peptide-based electronic devices.


Subject(s)
Dipeptides/chemistry , Molecular Dynamics Simulation , 3-Mercaptopropionic Acid/chemistry , Adsorption , Amino Acids/chemistry , Electron Transport , Electrons , Gases , Gold/chemistry , Molecular Conformation , Surface Properties , Ultraviolet Rays
15.
Nat Mater ; 17(5): 439-444, 2018 05.
Article in English | MEDLINE | ID: mdl-29483635

ABSTRACT

Doping plays a crucial role in semiconductor physics, with n-doping being controlled by the ionization energy of the impurity relative to the conduction band edge. In organic semiconductors, efficient doping is dominated by various effects that are currently not well understood. Here, we simulate and experimentally measure, with direct and inverse photoemission spectroscopy, the density of states and the Fermi level position of the prototypical materials C60 and zinc phthalocyanine n-doped with highly efficient benzimidazoline radicals (2-Cyc-DMBI). We study the role of doping-induced gap states, and, in particular, of the difference Δ1 between the electron affinity of the undoped material and the ionization potential of its doped counterpart. We show that this parameter is critical for the generation of free carriers and influences the conductivity of the doped films. Tuning of Δ1 may provide alternative strategies to optimize the electronic properties of organic semiconductors.

16.
ACS Appl Mater Interfaces ; 10(1): 1340-1346, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29236472

ABSTRACT

Efficient n-doping of organic semiconductors requires electron-donating molecules with small ionization energies, making such n-dopants usually sensitive to degradation under air exposure. A workaround consists in the usage of air-stable precursor molecules containing the actual n-doping species. Here, we systematically analyze the doping mechanism of the small-molecule precursor o-MeO-DMBI-Cl, which releases a highly reducing o-MeO-DMBI radical upon thermal evaporation. n-Doping of N,N-bis(fluoren-2-yl)-naphthalene tetracarboxylic diimide yields air-stable and highly conductive films suitable for application as electron transport layer in organic solar cells. By photoelectron spectroscopy, we determine a reduced doping efficiency at high doping concentrations. We attribute this reduction to a change of the precursor decomposition mechanism with rising crucible temperature, yielding an undesired demethylation at high evaporation rates. Our results do not only show the possibility of efficient and air-stable n-doping, but also support the design of novel air-stable precursor molecules of strong n-dopants.

17.
J Phys Condens Matter ; 28(18): 185502, 2016 May 11.
Article in English | MEDLINE | ID: mdl-27058225

ABSTRACT

Thermally evaporated molybdenum trioxide (MoO3) doped C60 films, which could change n type features of pristine C60 to form a p type mixed C60 layer, are investigated by x-ray and ultraviolet photoelectron spectroscopy. It is found that C60 HOMO progressively shifts closer to the Fermi level after increased MoO3 doping concentration, and final onset of C60 HOMO is pinned at binding energy of 0.20 eV, indicating the formation of p type C60 films. It is proposed that in charge transfer induced p type C60 formation, due to large electron affinity of MoO3 (6.37 eV), electrons from HOMO of C60 could easily transfer to MoO3 to form cations and therefore increase hole concentration, which could gradually push C60 HOMO to the Fermi level and finally form p type C60 films. Moreover, clear different types of C60 species have been confirmed from UPS spectra in highly doped films.

18.
ACS Appl Mater Interfaces ; 8(18): 11526-31, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27101940

ABSTRACT

Solution-processed perovskite solar cells are attracting increasing interest due to their potential in next-generation hybrid photovoltaic devices. Despite the morphological control over the perovskite films, quantitative information on electronic structures and interface energetics is of paramount importance to the optimal photovoltaic performance. Here, direct and inverse photoemission spectroscopies are used to determine the electronic structures and chemical compositions of various methylammonium lead halide perovskite films (MAPbX3, X = Cl, Br, and I), revealing the strong influence of halide substitution on the electronic properties of perovskite films. Precise control over halide compositions in MAPbX3 films causes the manipulation of the electronic properties, with a qualitatively blue shift along the I → Br → Cl series and showing the increase in ionization potentials from 5.96 to 7.04 eV and the change of transport band gaps in the range from 1.70 to 3.09 eV. The resulting light absorption of MAPbX3 films can cover the entire visible region from 420 to 800 nm. The results presented here provide a quantitative guide for the analysis of perovskite-based solar cell performance and the selection of optimal carrier-extraction materials for photogenerated electrons and holes.

19.
Langmuir ; 32(8): 1981-7, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26844381

ABSTRACT

Tetraphenyldibenzoperiflanthene (DBP) is a promising candidate as a component of highly efficient organic photovoltaic cells and organic light-emitting diodes. The structural properties of thin films of this particular lander-type molecule on Ag(111) were investigated by complementary techniques. Highly ordered structures were obtained, and their mutual alignment was characterized by means of low-energy electron diffraction (LEED). Scanning tunneling microscopy (STM) images reveal two slightly different arrangements within the first monolayer (ML), both describable as specific herringbone patterns with two molecules per unit cell whose dibenzoperiflanthene framework is parallel to the surface. In contrast, single DBP molecules in the second ML were imaged with much higher intramolecular resolution, resembling the shape of the frontier orbitals in the gas phase as calculated by means of density functional theory (DFT). Further deposition leads to the growth of highly ordered bilayer islands on top of the first ML with identical unit cell dimensions and orientation but slightly inclined molecules. This suggests that the first ML acts as a template for the epitaxial growth of further layers. Simultaneously, a significant number of second-layer molecules mainly located at step edges or scattered over narrow terraces do not form highly ordered aggregates.

20.
J Phys Condens Matter ; 28(9): 094001, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26871646

ABSTRACT

Upon charge carrier transport behaviors of high-mobility organic field effect transistors of pentacene single crystal, effects of ambient gases and resultant probable 'impurities' at the crystal surface have been controversial. Definite knowledge on the surface stoichiometry and chemical composites is indispensable to solve this question. In the present study, high-resolution x-ray photoelectron spectroscopy (XPS) measurements on the pentacene single crystal samples successfully demonstrated a presence of a few atomic-percent of (photo-)oxidized species at the first molecular layer of the crystal surface through accurate analyses of the excitation energy (i.e. probing depth) dependence of the C1s peak profiles. Particular methodologies to conduct XPS on organic single crystal samples, without any charging nor damage of the sample in spite of its electric insulating character and fragility against x-ray irradiation, is also described in detail.

SELECTION OF CITATIONS
SEARCH DETAIL
...