Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
J Pers Med ; 14(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38672987

ABSTRACT

DNA methylation is a key epigenetic modification involved in gene regulation, contributing to both physiological and pathological conditions. For a more profound comprehension, it is essential to conduct a precise comparison of DNA methylation patterns between sample groups that represent distinct statuses. Analysis of differentially methylated regions (DMRs) using computational approaches can help uncover the precise relationships between these phenomena. This paper describes a hybrid model that combines the beta-binomial Bayesian hierarchical model with a combination of ranking methods known as HBCR_DMR. During the initial phase, we model the actual methylation proportions of the CpG sites (CpGs) within the replicates. This modeling is achieved through beta-binomial distribution, with parameters set by a group mean and a dispersion parameter. During the second stage, we establish the selection of distinguishing CpG sites based on their methylation status, employing multiple ranking techniques. Finally, we combine the ranking lists of differentially methylated CpG sites through a voting system. Our analyses, encompassing simulations and real data, reveal outstanding performance metrics, including a sensitivity of 0.72, specificity of 0.89, and an F1 score of 0.76, yielding an overall accuracy of 0.82 and an AUC of 0.94. These findings underscore HBCR_DMR's robust capacity to distinguish methylated regions, confirming its utility as a valuable tool for DNA methylation analysis.

2.
Article in English | MEDLINE | ID: mdl-38584531

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) remains a significant contributor to mortality, often exacerbated by metastasis and chemoresistance. Novel therapeutic strategies are imperative to enhance current treatments. The dysregulation of the PI3K/Akt signaling pathway is implicated in CRC progression. This study investigates the therapeutic potential of Wortmannin, combined with 5-fluorouracil (5-FU), to target the PI3K/Akt pathway in CRC. METHODS: Anti-migratory and antiproliferative effects were assessed through wound healing and MTT assays. Apoptosis and cell cycle alterations were evaluated using Annexin V/Propidium Iodide Apoptosis Assay. Wortmannin's impact on the oxidant/antioxidant equilibrium was examined via ROS, SOD, CAT, MDA, and T-SH levels. Downstream target genes of the PI3K/AKT pathway were analyzed at mRNA and protein levels using RTPCR and western blot, respectively. RESULTS: Wortmannin demonstrated a significant inhibitory effect on cell proliferation, modulating survivin, cyclinD1, PI3K, and p-Akt. The PI3K inhibitor attenuated migratory activity, inducing E-cadherin expression. Combined Wortmannin with 5-FU induced apoptosis, increasing cells in sub-G1 via elevated ROS levels. CONCLUSION: This study underscores Wortmannin's potential in inhibiting CRC cell growth and migration through PI3K/Akt pathway modulation. It also highlights its candidacy for further investigation as a promising therapeutic option in colorectal cancer treatment.

3.
Sci Rep ; 13(1): 22104, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092774

ABSTRACT

Colorectal cancer (CRC) involves epigenetic alterations. Irregular gene-methylation alteration causes and advances CRC tumor growth. Detecting differentially methylated genes (DMGs) in CRC and patient survival time paves the way to early cancer detection and prognosis. However, CRC data including survival times are heterogeneous. Almost all studies tend to ignore the heterogeneity of DMG effects on survival. To this end, we utilized a sparse estimation method in the finite mixture of accelerated failure time (AFT) regression models to capture such heterogeneity. We analyzed a dataset of CRC and normal colon tissues and identified 3406 DMGs. Analysis of overlapped DMGs with several Gene Expression Omnibus datasets led to 917 hypo- and 654 hyper-methylated DMGs. CRC pathways were revealed via gene ontology enrichment. Hub genes were selected based on Protein-Protein-Interaction network including SEMA7A, GATA4, LHX2, SOST, and CTLA4, regulating the Wnt signaling pathway. The relationship between identified DMGs/hub genes and patient survival time uncovered a two-component mixture of AFT regression model. The genes NMNAT2, ZFP42, NPAS2, MYLK3, NUDT13, KIRREL3, and FKBP6 and hub genes SOST, NFATC1, and TLE4 were associated with survival time in the most aggressive form of the disease that can serve as potential diagnostic targets for early CRC detection.


Subject(s)
Colorectal Neoplasms , DNA Methylation , Humans , Gene Expression Profiling , Protein Interaction Maps/genetics , Wnt Signaling Pathway , Transcription Factors/genetics , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics
4.
Res Sq ; 2023 May 29.
Article in English | MEDLINE | ID: mdl-37397988

ABSTRACT

Colorectal cancer (CRC) involves epigenetic alterations. Irregular gene-methylation alteration causes and advances CRC tumor growth. Detecting differentially methylated genes (DMGs) in CRC and patient survival time paves the way to early cancer detection and prognosis. However, CRC data including survival times are heterogeneous. Almost all studies tend to ignore the heterogeneity of DMG effects on survival. To this end, we utilized a sparse estimation method in the finite mixture of accelerated failure time (AFT) regression models to capture such heterogeneity. We analyzed a dataset of CRC and normal colon tissues and identified 3,406 DMGs. Analysis of overlapped DMGs with several Gene Expression Omnibus datasets led to 917 hypo- and 654 hyper-methylated DMGs. CRC pathways were revealed via gene ontology enrichment. Hub genes were selected based on Protein-Protein-Interaction network including SEMA7A, GATA4, LHX2, SOST, and CTLA4, regulating the Wnt signaling pathway. The relationship between identified DMGs/hub genes and patient survival time uncovered a two-component mixture of AFT regression model. The genes NMNAT2, ZFP42, NPAS2, MYLK3, NUDT13, KIRREL3, and FKBP6 and hub genes SOST, NFATC1, and TLE4 were associated with survival time in the most aggressive form of the disease that can serve as potential diagnostic targets for early CRC detection.

5.
Cell J ; 25(3): 194-202, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-37038699

ABSTRACT

OBJECTIVE: We investigated whether co-incubation of 5-FU and gum-based cerium oxide nanoparticles (CeO2 NPs) would improve half-maximal inhibitory concentration (IC50) and apoptosis in the Caco-2 cancer cell line Materials and Methods: In this experimental study, we synthesized Ceo-2-XG by the nano perception method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), dynamic light scattering (DLS) and vibrating sample magnetometer (VSM) techniques were employed to characterize the synthesized nanoparticles. The Caco-2 cancer cells were cultured and treated with Ceo-2- XG and 5-FU. Cytotoxicity analysis was carried out using MTT assay on Caco-2 cancer cells. CXCR1, CXCR2, CXCL8, BAX, BCL-2, P53, CASPASE-3, CASPASE-8 and CASPASE-9 gene expression changes were assessed by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). The Caco-2 cancer cell mortality mechanism was analyzed using Annexin V-FITC/PI flow cytometry. Using the inverted microscope morphology changes of the Caco-2 cancer cells was observed. RESULTS: With a sample size of roughly 11 nm, TEM analysis revealed spherical structures. Interestingly, after 72 hours, 400 µg/ml nanoparticles significantly lowered the 50 of 5-FU from 101 to 71 µg/ml (P<000.1). Furthermore, qRT-PCR analysis showed that BCL-2, CXCR1, CXCR2 and CXCR8 expressions were significantly decreased in the 5-FU and Ceo-2-XG nanoparticles co-incubated group, compared to the 5-FU alone (P<0.001). Notably, gene expressions of BAX, P53, CASPASE-3, CASPASE-8 and CASPASE-9 were significantly higher in the 5-FU and Ceo- 2-XG nanoparticles co-incubated group, compared to the 5-FU alone (P<0.001). The findings revealed that dead cells owing to apoptosis were more than two times higher in 5-FU and Ceo-2-XG nanoparticles cancer cells than in 5-FU alone treated cancer cells. CONCLUSION: Co-incubation of 5-FU and Ceo-2-XG nanoparticles significantly increased apoptosis in the Caco-2 cancer cells. The antiproliferative activity of co-incubated 5-FU and Ceo-2-XG nanoparticles on Caco-2 cancer cells was substantially higher than that of 5-FU alone.

6.
J Cell Mol Med ; 27(4): 496-505, 2023 02.
Article in English | MEDLINE | ID: mdl-36691971

ABSTRACT

We describe a 3.5-year-old Iranian female child and her affected 10-month-old brother with a maternally inherited derivative chromosome 9 [der(9)]. The postnatally detected rearrangement was finely characterized by aCGH analysis, which revealed a 15.056 Mb deletion of 9p22.3-p24.3p22.3 encompassing 14 OMIM morbid genes such as DOCK8, KANK1, DMRT1 and SMARCA2, and a gain of 3.309 Mb on 18p11.31-p11.32 encompassing USP14, THOC1, COLEC12, SMCHD1 and LPIN2. We aligned the genes affected by detected CNVs to clinical and functional phenotypic features using PhenogramViz. In this regard, the patient's phenotype and CNVs data were entered into PhenogramViz. For the 9p deletion CNV, 53 affected genes were identified and 17 of them were matched to 24 HPO terms describing the patient's phenotypes. Also, for CNV of 18p duplication, 22 affected genes were identified and six of them were matched to 13 phenotypes. Moreover, we used DECIPHER for in-depth characterization of involved genes in detected CNVs and also comparison of patient phenotypes with 9p and 18p genomic imbalances. Based on our filtration strategy, in the 9p22.3-p24.3 region, approximately 80 pathogenic/likely pathogenic/uncertain overlapping CNVs were in DECIPHER. The size of these CNVs ranged from 12.01 kb to 18.45 Mb and 52 CNVs were smaller than 1 Mb in size affecting 10 OMIM morbid genes. The 18p11.31-p11.32 region overlapped 19 CNVs in the DECIPHER database with the size ranging from 23.42 kb to 1.82 Mb. These CNVs affect eight haploinsufficient genes.


Subject(s)
Chromosome Deletion , Cytoskeletal Proteins , Male , Female , Humans , Iran , Comparative Genomic Hybridization , Phenotype , Adaptor Proteins, Signal Transducing , Ubiquitin Thiolesterase , Guanine Nucleotide Exchange Factors , Chromosomal Proteins, Non-Histone
7.
Cancer Med ; 12(1): 525-540, 2023 01.
Article in English | MEDLINE | ID: mdl-35702822

ABSTRACT

PURPOSE: Fusion transcripts are transcriptome-mediated alterations involved in tumorigenesis and are considered as diagnostic, prognostic, and therapeutic biomarkers. In metastatic colorectal carcinoma (mCRC), fusion transcripts are rarely reported. The main challenge is to identify driver chimeras with a significant role in cancer progression. METHODS: In the present study, 86 RNA sequencing data samples were analyzed to discover driver fusion transcripts. Functional assays included clonogenic cell survival, wound-healing, and transwell cell invasion. Quantitative expression analysis of epithelial-mesenchymal transition (EMT), apoptotic regulators, and metastatic markers were examined for the candidate fusion genes. Kaplan-Meier survival analysis was performed using patient overall survival (OS). RESULTS: A variety of driver fusions were identified. Fourteen fusion genes (51% of mCRC), each at least found in two mCRC samples, were determined as oncogenic fusion transcripts by in silico analysis of their functions. Among them, two recurrent chimeric transcripts confirmed by Sanger sequencing were selected. Positive expression of ADAP1-NOC4L was significantly associated with an increased risk of poor OS in mCRC patients. In vitro transforming potential for the chimera, resulting from the fusion of ADAP1 and NOC4L was assessed. Overexpression of this fusion gene increased cell proliferation and enhanced migration and invasion of CRC cells. In addition, it significantly upregulated EMT and anti-apoptotic markers. CONCLUSIONS: ADAP1-NOC4L transcript chimera, a driver chimera identified in this study, provides new insight into the underlying mechanisms involved in the development and spread of mCRC. It suggests the potential of RNA-based alterations as novel targets for personalized medicine in clinical practice.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Humans , Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis , Cell Line, Tumor , Cell Transformation, Neoplastic , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Nerve Tissue Proteins/genetics , Ribonucleoproteins, Small Nuclear/metabolism
8.
Epigenomics ; 14(19): 1213-1228, 2022 10.
Article in English | MEDLINE | ID: mdl-36325830

ABSTRACT

Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.


Vitamin D regulates various physiological processes in the body and could have anticancer effects. These anticancer effects are the result of interactions between many factors such as genes, the environment around the tumors, bacteria in the intestine, etc. in colorectal cancer. Epigenetic factors, including a big network of different molecules in the body that could control our genes without changing DNA, also play a role in regulating vitamin D. This review summarizes the advances in the understanding of different epigenetic factors related to vitamin D and colorectal cancer.


Subject(s)
Colorectal Neoplasms , Epigenomics , Humans , Vitamin D/therapeutic use , DNA Methylation , Epigenesis, Genetic , Vitamins , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Tumor Microenvironment
9.
Cancer Cell Int ; 22(1): 337, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36333783

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are involved in a variety of mechanisms related to tumorigenesis by functioning as oncogenes or tumor-suppressors or even harboring oncogenic and tumor-suppressing effects; representing a new class of cancer biomarkers and therapeutic targets. It is predicted that more than 35,000 ncRNA especially lncRNA are positioned at the intergenic regions of the human genome. Emerging research indicates that one of the key pathways controlling lncRNA expression and tissue specificity is epigenetic regulation. METHODS: In the current article, a novel approach for lncRNA discovery based on the intergenic position of most lncRNAs and a single CpG site methylation level representing epigenetic characteristics has been suggested. RESULTS: Using this method, a novel antisense lncRNA named LINC02892 presenting three transcripts without the capacity of coding a protein was found exhibiting nuclear, cytoplasmic, and exosome distributions. CONCLUSION: The current discovery strategy could be applied to identify novel non-coding RNAs influenced by methylation aberrations.

10.
Iran J Basic Med Sci ; 25(6): 762-766, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35949306

ABSTRACT

Objectives: Early, specific, and sensitive detection methods of COVID-19 are essential for force stopping its worldwide infection. Although CT images of the lung and/or viral RNA extraction followed by real-time reverse-transcriptase-polymerase chain reaction (rRT-PCR) are widely used; they have some limitations. Here, we developed a highly sensitive magnetic bead-based viral RNA extraction assay followed by rRT-PCR. Materials and Methods: Case group included oropharyngeal/nasopharyngeal and blood samples from 30 patients diagnosed positive by PCR test for COVID-19 and control group included 30 same samples from COVID-19 negative PCR test individuals. RNA was extracted, using viral RNA extraction kit as well as using our hand-made capture bead-based technique. A one-step cDNA synthesis and Real Time PCR was conducted. A two-step comparison of the different viral RNA extraction methods for oropharyngeal/nasopharyngeal and blood samples was performed. Student t-test was applied with a P<0.05 considered statistically significant. Results: In the case group, all 30 mucosal samples extracted either with viral RNA extraction kit or with beads-based assay were COVID-19 positive although in the latter category, Cqs were much lower. Although 43% of plasma samples extracted by bead-based method were found to be positive but no plasma samples extracted with column-based kit were detected positive by Real Time PCR. Conclusion: Bead-based RNA extraction method can reduce RNA loss by its single-tube performance and enhance the test sensitivity. It is also more sensitive to lower viral loads as shown in the detection of blood samples and the lower Cqs of mucosal samples.

11.
Mol Genet Genomics ; 297(4): 1101-1109, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35616708

ABSTRACT

DNA methylation is a fundamental epigenetic process and have a critical role in many biological processes. The study of DNA methylation at a large scale of genomic levels is widely conducted by several techniques that are next-generation sequencing (NGS)-based methods. Methylome data revealed by DNA methylation next-generation sequencing (mNGS), should be always verified by another technique which they usually have a high cost. In this study, we offered a low-cost approach to corroborate the mNGS data. In this regard, mNGS was performed on 6 colorectal cancer (case group) and 6 healthy individual colon tissue (control group) samples. An R-script detected differentially methylated regions (DMRs), was further validated by high resolution melting (MS-HRM) analysis. After analyzing the data, the algorithm found 194 DMRs. Two locations with the highest level of methylation difference were verified by MS-HRM, which their results were in accordance with the mNGS. Therefore, in the present study, we suggested MS-HRM as a simple, accurate and low-cost method, useful for confirming methylation sequencing results.


Subject(s)
DNA Methylation , High-Throughput Nucleotide Sequencing , DNA Methylation/genetics , Genomics , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods
12.
Mol Cell Probes ; 63: 101816, 2022 06.
Article in English | MEDLINE | ID: mdl-35378223

ABSTRACT

BACKGROUND: Despite several attempts to define the many genomic aspects of colorectal cancer liver metastasis (CRC-LM), there is still a lack of a complete and accurate picture of the cancer transcriptome and its function in the generation of metastasis. METHODS: Cancer Genome Atlas Sequence Read Archive (SRA) was used to get RNA sequencing data for CRC-LM and primary CRC. The CDseqR deconvolution method followed by the edgeR statistical approach was employed to accurately find differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) was used to determine the long non-coding RNA (lncRNA) and mRNA pairs in CRC-LM etiology. Three alternative methods were used to explore fusion transcripts to anticipate the potential driver chimeras. RESULTS: Multiple cancer-related pathways were enriched in the up-regulated genes, including cell cycle, DNA replication, and RNA transport. SPP1 was the most up-regulated gene important in the cellular proliferation and migration and CCDC152 was the most down-regulated gene known in the metastatic spread of CRC. There were seven distinct lncRNAs discovered, two of which were novel (LOC107984834 and LOC107985040) and associated with metastatic related pathways such as the extracellular matrix-receptor interaction. Overall survival analysis demonstrated that SPP1 and LOC107985040 were significantly associated with poor prognosis outcomes. Seven new fusion transcripts were found in seven CRC-LM patients (22.5%) anticipated to have potential driver functions in cancer. CONCLUSION: The newly discovered dysregulated genes and other transcriptome abnormalities could contribute to a better understanding of the CRC-LM underlying mechanism, leading to the development of new diagnostic, prognostic, and therapeutic molecular options for personalized medicine.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , RNA, Long Noncoding , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Humans , Liver Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcriptome/genetics
13.
BMC Cancer ; 22(1): 196, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35193569

ABSTRACT

BACKGROUND: Several investigations have reported diverse roles of long non-coding RNA (lncRNA) in biological processes, tumor development, and progression of colorectal cancer (CRC). In this study, we investigated the lncRNA AC087388.1 tumorigenic role in CRC cells. METHODS: The CRC tissues were collected at the Reza Radiotherapy and Oncology Center, Mashhad, Iran. The human SW-48 and HT-29 CRC cell lines were obtained from the national cell bank of Iran. The cells were cultured according to ATCC (the American Type Culture Collection) recommendations. Quantitative real-time PCR was applied to assess the RNA expression. ShRNA transfection was done to downregulate the target gene. MTT and apoptosis assays were conducted to evaluate cell proliferation and viability, respectively. Colony formation assay, wound healing assay, and invasion assay were applied to determine growth, motility, and invasion of the cells, respectively. ENCORI online tool was used as downstream enrichment analysis. RESULTS: Forty CRC patients were encompassed in this study. The results demonstrated that the lncRNA SLC16A1-AS1, AC087388.1, and ELFN1-AS1 were significantly overexpressed in the CRC tissues in comparison to their normal counterpart margins. All the lncRNAs have shown significant Area Under Curve (AUC) values in the patients. Downregulation of lncRNA AC087388.1 remarkably decreased the cell proliferation and viability of the CRC cells. In addition, the data demonstrated that the downregulation of lncRNA AC087388.1 significantly suppressed cell growth and colony formation capability in the cells. Also, downregulation of lncRNA AC087388.1 attenuated motility and invasion of CRC cells, and significantly decreased the expression of invasion genes. In-silico functional enrichment analysis indicated that the lncRNA AC087388.1 has contributed to crucial signaling pathways in tumorigenesis such as the p53 and Wnt signaling pathways, apoptosis, and cell cycle. CONCLUSIONS: Altogether, we showed that lncRNA AC087388.1 has an oncogenic role in tumorigenesis of CRC, and it can be considered as a novel diagnostic and prognostic biomarker in CRC.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , RNA, Long Noncoding/genetics , Apoptosis/genetics , Carcinogenesis/genetics , Cell Cycle/genetics , Cell Proliferation/genetics , Down-Regulation , HT29 Cells , Humans , Wnt Signaling Pathway/genetics
14.
BMC Med Genomics ; 15(1): 8, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35016683

ABSTRACT

PURPOSE: Colorectal cancer (CRC) is one of the common cancers with a high mortality rate worldwide. In Iran, there has been a trend of increased incidence of colorectal cancer in the last three decades that necessitates the early diagnosis. Genetic factors have an influential role in its etiology along with the conventional risk factors such as age, diet, and lifestyle. Results from GWAS have shown significant associations between SMAD7 gene variants and risk of CRC. This study aimed to assess the association of certain polymorphisms as well as haplotypes of this gene and risk of colorectal cancer. METHODS AND MATERIALS: This study was designed as a case-control association study. After obtaining ethical approval and informed consent, blood samples from 209 patients with colorectal cancer were collected and DNA was extracted. Four variants: rs4939827, rs34007497, rs8085824 and rs8088297 were genotyped using ARMS-PCR method. RESULTS: SMAD7 rs4939827 in the recessive and co-dominant models was associated with colorectal cancer risk [TT/CT + CC: OR = 2.90, 95%CI (1.38-6.09), p = 0.005; CC + TT/CT: OR = 1.66, 95%CI (1.00-2.75), p = 0.01]. Haplotype analysis indicated that some SNP combinations including two for-SNPs haplotypes of T-T-C-C and T-C-C-A were significantly associated with CRC risk. CONCLUSION: Based on the identified association of SMAD7 gene variations and haplotypes with colorectal cancer risk in our population, genetic variations in this gene region may have a role in CRC development. This data may shed light on the genetic predisposition of CRC which involves different pathways including TGF-ß.


Subject(s)
Colorectal Neoplasms , Case-Control Studies , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Genetic Markers , Genetic Predisposition to Disease , Genotype , Haplotypes , Humans , Polymorphism, Single Nucleotide , Risk Factors , Smad7 Protein/genetics , Smad7 Protein/metabolism
15.
Biotechnol Genet Eng Rev ; 37(2): 238-268, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34789069

ABSTRACT

Humans are exposed to a wide range of bone tissue injuries. In severe cases, bone damages could be only treated with transplantation of autologous or allogeneic grafting.In recent years, tissue engineering has become a promising strategy for repairing damaged organs and tissues, providing a great opportunity to cure several diseases. Bone tissue engineering consists of three components: scaffold, cells, and growth factors. Current bone tissue engineering strategies combine the use of stem cells with biologically active materials and gene therapy to mimic the natural microenvironment of bone. The combination of the scaffold with growth factors and extracellular matrix protein molecules can promote cell attachment, proliferation, and induce osteogenesis, which could provide signals for cell migration to begin the healing process during repair and bone formation.This article reviews the principles of bone regeneration and the most current developments of bone tissue engineering related to bone growth factors, the biologically active materials, such as bacterial cellulose, and stem cells.


Subject(s)
Mesenchymal Stem Cells , Tissue Scaffolds , Bone Regeneration , Cell Differentiation , Humans , Osteogenesis , Stem Cells , Tissue Engineering
16.
Clin Epigenetics ; 13(1): 193, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663458

ABSTRACT

Methylation analysis of circulating cell-free DNA (cirDNA), as a liquid biopsy, has a significant potential to advance the detection, prognosis, and treatment of cancer, as well as many genetic disorders. The role of epigenetics in disease development has been reported in several hereditary disorders, and epigenetic modifications are regarded as one of the earliest and most significant genomic aberrations that arise during carcinogenesis. Liquid biopsy can be employed for the detection of these epigenetic biomarkers. It consists of isolation (pre-analytical) and detection (analytical) phases. The choice of pre-analytical variables comprising cirDNA extraction and bisulfite conversion methods can affect the identification of cirDNA methylation. Indeed, different techniques give a different return of cirDNA, which confirms the importance of pre-analytical procedures in clinical diagnostics. Although novel techniques have been developed for the simplification of methylation analysis, the process remains complex, as the steps of DNA extraction, bisulfite treatment, and methylation detection are each carried out separately. Recent studies have noted the absence of any standard method for the pre-analytical processing of methylated cirDNA. We have therefore conducted a comprehensive and systematic review of the important pre-analytical and analytical variables and the patient-related factors which form the basis of our guidelines for analyzing methylated cirDNA in liquid biopsy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnosis , Cell-Free Nucleic Acids/genetics , DNA Methylation/physiology , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/genetics , Cell-Free Nucleic Acids/analysis , DNA Methylation/genetics , Humans , Prognosis
17.
BMC Med Genomics ; 14(1): 246, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645434

ABSTRACT

BACKGROUND: The incidence of colorectal cancer (CRC) has increased during recent years in Iran and other developing countries. Clinical studies suggest that essential folate dietary intake and moderate deficiency of methylenetetrahydrofolate reductase (MTHFR) may protect and reduce the risk of CRC. The present study aimed to investigate the clinical significance of C677T polymorphism within the MTHFR gene and its correlation with the serum folate and Vit B12 in the Iranian population suffering from CRC. METHODS: Blood samples were taken from 1017 Iranian individuals (517 cases and 500 controls) who were referred for colonoscopy. TaqMan probe assay was performed for C677T MTHFR polymorphism. Sera were fractionated from the blood samples of 43 patients and controls and folate and Vit B12 concentrations were measured by a monobind kit. The correlation of MTHFR polymorphisms and folate/vitamin-B12 with CRC risk was analyzed. RESULTS: In the current study, we found the frequency of three different genotypes of MTHFR polymorphism in the Iranian population i.e., CC, CT, and TT, to be 51.31, 26.73, 21.96 and 61, 32.2, 6.8 in case and control groups, respectively. The homozygote genotype of MTHFR rs1801133 polymorphism is associated with an increased risk of CRC by 3.68, 1.42, and 3.74-fold in codominant, dominant, and recessive models respectively (p value < 0.01). Our study revealed that there was no significant difference between the amount of folate and Vit B12 in the case and control groups (p value > 0.05). CONCLUSIONS: This study revealed that there was no significant difference between the amount of folate and Vit B12 in the case and control groups. Furthermore, our results demonstrated a higher risk association for 677TT and 677TT + C677T genotypes of MTHFR compared with 677CC carriers among CRC patients.


Subject(s)
Adenomatous Polyps/genetics , Colorectal Neoplasms/genetics , Folic Acid/blood , Genotype , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Vitamin B 12/blood , Case-Control Studies , Female , Humans , Iran , Male , Middle Aged , Polymorphism, Genetic
18.
Ann Hematol ; 100(10): 2621-2631, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34247256

ABSTRACT

Currently, acute graft-versus-host disease (aGVHD) diagnosis is based on clinical features and pathological findings. Until now, there is no non-invasive diagnostic test for aGVHD. MicroRNAs may act as promising predictive, diagnostic, or prognostic biomarkers for aGVHD. The purpose of the current study was to validate circulating microRNAs as diagnostic biomarkers to assist clinicians in promptly diagnosing aGVHD, so that treatment can be initiated earlier. In the present study, we evaluated six microRNAs (miR-455-3p, miR-5787, miR-6729-5p, miR-6776-5p, miR-548a-3p, and miR-6732-5p) selected from miRNA array data in 40 aGVHD patients compared to 40 non-GVHD patients with RT-qPCR. Target genes of differentially expressed microRNAs (DEMs) were predicted using Targetscan, miRanda, miRDB, miRWalk, PICTAR5, miRmap, DIANA, and miRTarBase algorithms, and their functions were analyzed using EnrichNet, Metascape, and DIANA-miRPath databases. The expressions of plasma miR-455-3p and miR-5787 were significantly downregulated, whereas miR-548a-3p was significantly upregulated in aGVHD patients compared to non-GVHD patients. Moreover, DEMs showed potentially high diagnostic accuracy for aGVHD. In silico analysis of DEMs provided valuable information on the role of DEMs in GVHD, immune regulation, and inflammatory response. Our study suggested that miR-455-3p, miR-5787, and miR-548a-3p could be used as potential noninvasive biomarkers in the diagnosis of aGVHD in addition to possible therapeutic targets in aGVHD.


Subject(s)
Graft vs Host Disease/blood , MicroRNAs/blood , Biomarkers/blood , Down-Regulation , Female , Graft vs Host Disease/diagnosis , Graft vs Host Disease/genetics , Humans , Male , MicroRNAs/genetics , Middle Aged , Prognosis , Transcriptome , Up-Regulation
19.
Cancer Cell Int ; 21(1): 346, 2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34217303

ABSTRACT

BACKGROUND: Methylation plays an important role in colorectal cancer (CRC) pathogenesis. The goal of this study was to identify aberrantly differentially methylated genes (DMGs) and pathways through bioinformatics analysis among Iranian CRC patients using Methylation Next Generation Sequencing. METHODS: This study has integrated results of SureSelectXT Methyl-Seq Target with the potential key candidate genes and pathways in CRC. Six CRC and six samples of normal colon were integrated and deeply analyzed. In addition to this gene methylation profiling, several other gene methylation profiling datasets were obtained from Gene Expression Omnibus (GEO) and TCGA datasets. DMGs were sorted and candidate genes and enrichment pathways were analyzed. DMGs-associated protein-protein interaction network (PPI) was constructed based on the STRING online database. RESULTS: Totally, 320 genes were detected as common genes between our patients and selected GEO and TCGA datasets from the Agilent SureSelect analysis with selecting criteria of p-value < 0.05 and FC ≥ 1.5. DMGs were identified from hyper-DMGs PPI network complex and 10 KEGG pathways were identified. The most important modules were extracted from MCODE, as most of the corresponding genes were involved in cellular process and protein binding. CONCLUSIONS: Hub genes including WNT2, SFRP2, ZNF726 and BMP2 were suggested as potentially diagnostic and therapeutic targets for CRC.

20.
Crit Rev Oncol Hematol ; 160: 103303, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33757837

ABSTRACT

Chimeric transcripts are critical for diagnosis or prognosis and could constitute effective therapeutic targets. Fresh tissues are the major source for the identification of these fusion transcripts. The quality and quantity of the extracted RNA directly affect fusion transcript discovery. Formalin-fixed paraffin-embedded (FFPE) tissues allow long-time preservation of tumor histology for microscopic evaluation; however, no provision has been made for either the type of fixative or embedding procedure used for preserving RNA. Nonetheless, the widespread use of these FFPE tissues in translational and clinical research prompts to overcome these issues. RNA is, by nature, of reduced quality and amount in these FFPE tissues. Therefore, attempts should be taken to minimize the limitations of FFPE tissues as a widely available source of fusion transcript identification. In this review, we describe approaches allowing fusion transcript identification from FFPE tissues using RNA sequencing techniques.


Subject(s)
Formaldehyde , Gene Expression Profiling , Humans , Paraffin Embedding , RNA/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...