Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
2.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563365

ABSTRACT

Gestational diabetes mellitus (GDM) increases risk of adverse pregnancy outcomes and maternal cardiovascular complications. It is widely believed that maternal endothelial dysfunction is a critical determinant of these risks, however, connections to maternal cardiac dysfunction and mechanisms of pathogenesis are unclear. Circulating extracellular vesicles (EVs) are emerging biomarkers that may provide insights into the pathogenesis of GDM. We examined the impact of GDM on maternal cardiac and vascular health in a rat model of diet-induced obesity-associated GDM. We observed a >3-fold increase in circulating levels of endothelial EVs (p < 0.01) and von Willebrand factor (p < 0.001) in GDM rats. A significant increase in mitochondrial DNA (mtDNA) within circulating extracellular vesicles was also observed suggesting possible mitochondrial dysfunction in the vasculature. This was supported by nicotinamide adenine dinucleotide deficiency in aortas of GDM mice. GDM was also associated with cardiac remodeling (increased LV mass) and a marked impairment in maternal diastolic function (increased isovolumetric relaxation time [IVRT], p < 0.01). Finally, we observed a strong positive correlation between endothelial EV levels and IVRT (r = 0.57, p < 0.05). In summary, we observed maternal vascular and cardiac dysfunction in rodent GDM accompanied by increased circulating endothelial EVs and EV-associated mitochondrial DNA. Our study highlights a novel method for assessment of vascular injury in GDM and highlights vascular mitochondrial injury as a possible therapeutic target.


Subject(s)
Diabetes, Gestational , Extracellular Vesicles , Heart Diseases , Animals , DNA, Mitochondrial/genetics , Diabetes, Gestational/genetics , Female , Humans , Mice , Pregnancy , Rats , Rodentia/genetics
3.
Int J Mol Sci ; 23(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35457285

ABSTRACT

Globally, cardiovascular disease remains the leading cause of death. Most concerning is the rise in cardiovascular risk factors including obesity, diabetes and hypertension among youth, which increases the likelihood of the development of earlier and more severe cardiovascular disease. While lifestyle factors are involved in these trends, an increasing body of evidence implicates environmental exposures in early life on health outcomes in adulthood. Maternal obesity and diabetes during pregnancy, which have increased dramatically in recent years, also have profound effects on fetal growth and development. Mounting evidence is emerging that maternal obesity and diabetes during pregnancy have lifelong effects on cardiovascular risk factors and heart disease development. However, the mechanisms responsible for these observations are unknown. In this review, we summarize the findings of recent experimental studies, showing that maternal obesity and diabetes during pregnancy affect energy metabolism and heart disease development in the offspring, with a focus on the mechanisms involved. We also evaluate early proof-of-concept studies for interventions that could mitigate maternal obesity and gestational diabetes-induced cardiovascular disease risk in the offspring.


Subject(s)
Cardiovascular Diseases , Diabetes, Gestational , Heart Diseases , Obesity, Maternal , Pregnancy Complications , Prenatal Exposure Delayed Effects , Adolescent , Adult , Cardiovascular Diseases/etiology , Diabetes, Gestational/metabolism , Female , Heart Diseases/complications , Humans , Obesity, Maternal/complications , Pregnancy , Pregnancy Complications/etiology , Prenatal Exposure Delayed Effects/metabolism
4.
Circ Heart Fail ; 15(5): e008547, 2022 05.
Article in English | MEDLINE | ID: mdl-35418250

ABSTRACT

BACKGROUND: High doses of doxorubicin put cancer patients at risk for developing dilated cardiomyopathy. Previously, we showed that doxorubicin treatment decreases SIRT3 (sirtuin 3), the main mitochondrial deacetylase and increases protein acetylation in rat cardiomyocytes. Here, we hypothesize that SIRT3 expression can attenuate doxorubicin induced dilated cardiomyopathy in vivo by preventing the acetylation of mitochondrial proteins. METHODS: Nontransgenic, M3-SIRT3 (truncated SIRT3; short isoform), and M1-SIRT3 (full-length SIRT3; mitochondrial localized) transgenic mice were treated with doxorubicin for 4 weeks (8 mg/kg body weight per week). Echocardiography was performed to assess cardiac structure and function and validated by immunohistochemistry and immunofluorescence (n=4-10). Mass spectrometry was performed on cardiac mitochondrial peptides in saline (n=6) and doxorubicin (n=5) treated hearts. Validation was performed in doxorubicin treated primary rat and human induced stem cell derived cardiomyocytes transduced with adenoviruses for M3-SIRT3 and M1-SIRT3 and deacetylase deficient mutants (n=4-10). RESULTS: Echocardiography revealed that M3-SIRT3 transgenic mice were partially resistant to doxorubicin induced changes to cardiac structure and function whereas M1-SIRT3 expression prevented cardiac remodeling and dysfunction. In doxorubicin hearts, 37 unique acetylation sites on mitochondrial proteins were altered. Pathway analysis revealed these proteins are involved in energy production, fatty acid metabolism, and oxidative stress resistance. Increased M1-SIRT3 expression in primary rat and human cardiomyocytes attenuated doxorubicin-induced superoxide formation, whereas deacetylase deficient mutants were unable to prevent oxidative stress. CONCLUSIONS: Doxorubicin reduced SIRT3 expression and markedly affected the cardiac mitochondrial acetylome. Increased M1-SIRT3 expression in vivo prevented doxorubicin-induced cardiac dysfunction, suggesting that SIRT3 could be a potential therapeutic target for mitigating doxorubicin-induced dilated cardiomyopathy.


Subject(s)
Cardiomyopathy, Dilated , Doxorubicin , Oxidative Stress , Sirtuin 3 , Acetylation/drug effects , Animals , Cardiomyopathy, Dilated/chemically induced , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/prevention & control , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Heart Failure/metabolism , Humans , Mice , Mice, Transgenic , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Rats , Sirtuin 3/genetics , Sirtuin 3/metabolism
5.
Autophagy ; 17(9): 2257-2272, 2021 09.
Article in English | MEDLINE | ID: mdl-33044904

ABSTRACT

Lipotoxicity is a form of cellular stress caused by the accumulation of lipids resulting in mitochondrial dysfunction and insulin resistance in muscle. Previously, we demonstrated that the mitophagy receptor BNIP3L/Nix is responsive to lipotoxicity and accumulates in response to a high-fat (HF) feeding. To provide a better understanding of this observation, we undertook gene expression array and shot-gun metabolomics studies in soleus muscle from rodents on an HF diet. Interestingly, we observed a modest reduction in several autophagy-related genes. Moreover, we observed alterations in the fatty acyl composition of cardiolipins and phosphatidic acids. Given the reported roles of these phospholipids and BNIP3L in mitochondrial dynamics, we investigated aberrant mitochondrial turnover as a mechanism of impaired myocyte insulin signaling. In a series of gain-of-function and loss-of-function experiments in rodent and human myotubes, we demonstrate that BNIP3L accumulation triggers mitochondrial depolarization, calcium-dependent activation of DNM1L/DRP1, and mitophagy. In addition, BNIP3L can inhibit insulin signaling through activation of MTOR-RPS6KB/p70S6 kinase inhibition of IRS1, which is contingent on phosphatidic acids and RHEB. Finally, we demonstrate that BNIP3L-induced mitophagy and impaired glucose uptake can be reversed by direct phosphorylation of BNIP3L by PRKA/PKA, leading to the translocation of BNIP3L from the mitochondria and sarcoplasmic reticulum to the cytosol. These findings provide insight into the role of BNIP3L, mitochondrial turnover, and impaired myocyte insulin signaling during an overfed state when overall autophagy-related gene expression is reduced. Furthermore, our data suggest a mechanism by which exercise or pharmacological activation of PRKA may overcome myocyte insulin resistance.Abbreviations: BCL2: B cell leukemia/lymphoma 2; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; DNM1L/DRP1: dynamin 1-like; FUNDC1: FUN14 domain containing 1; IRS1: insulin receptor substrate 1; MAP1LC3A/LC3: microtubule-associated protein 1 light chain 3 alpha; MFN1: mitofusin 1; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; OPA1: OPA1 mitochondrial dynamin like GTPase; PDE4i: phosphodiesterase 4 inhibitor; PLD1: phospholipase D1; PLD6: phospholipase D family member 6; PRKA/PKA: protein kinase, AMP-activated; PRKCD/PKCδ: protein kinase C, delta; PRKCQ/PKCθ: protein kinase C, theta; RHEB: Ras homolog enriched in brain; RPS6KB/p70S6K: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; YWHAB/14-3-3ß: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta.


Subject(s)
Membrane Proteins , Mitochondrial Dynamics , Mitophagy , Muscle Cells , Proto-Oncogene Proteins , Tumor Suppressor Proteins , Animals , Autophagy/physiology , Cells, Cultured , Glucose/metabolism , Humans , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Mitophagy/genetics , Muscle Cells/metabolism , Phosphorylation , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism
6.
J Physiol ; 597(16): 4175-4192, 2019 08.
Article in English | MEDLINE | ID: mdl-31240717

ABSTRACT

KEY POINTS: Maternal resveratrol (RESV) administration in gestational diabetes (GDM) restored normoglycaemia and insulin secretion. GDM-induced obesity was prevented in male GDM+RESV offspring but not in females. GDM+RESV offspring exhibited improved glucose tolerance and insulin sensitivity. GDM+RESV restored hepatic glucose homeostasis in offspring. Glucose-stimulated insulin secretion was enhanced in GDM+RESV offspring. ABSTRACT: Gestational diabetes (GDM), the most common complication of pregnancy, is associated with adverse metabolic health outcomes in offspring. Using a rat model of diet-induced GDM, we investigated whether maternal resveratrol (RESV) supplementation (147 mg kg-1  day-1 ) in the third week of pregnancy could improve maternal glycaemia and protect the offspring from developing metabolic dysfunction. Female Sprague-Dawley rats consumed a high-fat and sucrose (HFS) diet to induce GDM. Lean controls consumed a low-fat (LF) diet. In the third trimester, when maternal hyperglycaemia was observed, the HFS diet was supplemented with RESV. At weaning, offspring were randomly assigned a LF or HFS diet until 15 weeks of age. In pregnant dams, RESV restored glucose tolerance, normoglycaemia and improved insulin secretion. At 15 weeks of age, GDM+RESV-HFS male offspring were less obese than the GDM-HFS offspring. By contrast, the female GDM+RESV-HFS offspring were similarly as obese as the GDM-HFS group. Hepatic steatosis, insulin resistance, glucose intolerance and dysregulated gluconeogenesis were observed in the male GDM offspring and were attenuated in the offspring of GDM+RESV dams. The dysregulation of several metabolic genes (e.g. ppara, lpl, pepck and g6p) in the livers of GDM offspring was attenuated in the GDM+RESV offspring group. Glucose stimulated insulin secretion was also improved in the islets from offspring of GDM+RESV dams. Thus, maternal RESV supplementation during the third trimester of pregnancy and lactation induced several beneficial metabolic health outcomes for both mothers and offspring. Therefore, RESV could be an alternative to current GDM treatments.


Subject(s)
Diabetes, Gestational/prevention & control , Diet, High-Fat/adverse effects , Dietary Sucrose/adverse effects , Glucose Intolerance/prevention & control , Islets of Langerhans/drug effects , Resveratrol/pharmacology , Animals , Antioxidants/pharmacology , Diabetes, Gestational/chemically induced , Female , Glucose/metabolism , Homeostasis , Islets of Langerhans/physiopathology , Male , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Sprague-Dawley , Resveratrol/administration & dosage , Sex Factors
7.
Endocrinology ; 160(8): 1907-1925, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31237608

ABSTRACT

Fetal exposure to gestational diabetes mellitus (GDM) and poor postnatal diet are strong risk factors for type 2 diabetes development later in life, but the mechanisms connecting GDM exposure to offspring metabolic health remains unclear. In this study, we aimed to determine how GDM interacts with the postnatal diet to affect islet function in the offspring as well as characterize the gene expression changes in the islets. GDM was induced in female rats using a high-fat, high-sucrose (HFS) diet, and litters from lean or GDM dams were weaned onto a low-fat (LF) or HFS diet. Compared with the lean control offspring, GDM exposure reduced glucose-stimulated insulin secretion in islets isolated from 15-week-old offspring, which was additively worsened when GDM exposure was combined with postnatal HFS diet consumption. In the HFS diet-fed offspring of lean dams, islet size and number increased, an adaptation that was not observed in the HFS diet-fed offspring of GDM dams. Islet gene expression in the offspring of GDM dams was altered in such categories as inflammation (e.g., Il1b, Ccl2), mitochondrial function/oxidative stress resistance (e.g., Atp5f1, Sod2), and ribosomal proteins (e.g., Rps6, Rps14). These results demonstrate that GDM exposure induced marked changes in gene expression in the male young adult rat offspring that cumulatively interact to worsen islet function, whole-body glucose homeostasis, and adaptations to HFS diets.


Subject(s)
Diabetes, Gestational/physiopathology , Islets of Langerhans/physiology , Animals , Body Weight , Diet, High-Fat , Female , Gene Expression , Glucose/metabolism , Islets of Langerhans/pathology , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Sucrose/administration & dosage
8.
Crit Rev Clin Lab Sci ; 55(2): 71-101, 2018 03.
Article in English | MEDLINE | ID: mdl-29308692

ABSTRACT

Since 1980, global obesity has doubled, and the incidence of cardiometabolic diseases such as type 2 diabetes and heart disease is also increasing. While genetic susceptibility and adult lifestyle are implicated in these trends, evidence from clinical cohorts, epidemiological studies and animal model experiments support a role for early-life environmental exposures in determining the long-term health of an individual, which has led to the formulation of the Developmental Origins of Health and Disease (DOHaD) theory. In fact, maternal obesity and diabetes during pregnancy, which are on the rise, are strongly associated with altered fetal growth and development as well as with lifelong perturbations in metabolic tissues. A mounting body of evidence implicates epigenetic mechanisms (e.g. DNA methylation and histone modifications) in the regulation of these effects and their transmission to future generations. This review critically discusses the current evidence (in animal model systems and humans) that implicates maternal obesity and diabetes during pregnancy in perturbing the epigenome of the next generation, and the consequential impact on growth, organ development and ultimately cardiometabolic disease progression. Additionally, this review will address some of the limitations of the DOHaD approach and areas that require further study. For example, future research requires verification of the mechanistic impact of the epigenetic marks and their persistence over the life course. Ultimately, this knowledge is needed to establish optimal screening, prevention and therapeutic approaches for children at risk of cardiometabolic disease development.


Subject(s)
Cardiovascular Diseases , Diabetes, Gestational , Epigenomics , Maternal Exposure , Metabolic Diseases , Obesity , Animals , Feeding Behavior , Female , Humans , Infant, Newborn , Life Style , Pregnancy
9.
Int J Mol Sci ; 18(7)2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28684678

ABSTRACT

Recent research aimed at understanding the rise in obesity and cardiometabolic disease in children suggests that suboptimal maternal nutrition conditions organ systems and physiological responses in the offspring contributing to disease development. Understanding the mechanisms by which the macronutrient composition of the maternal diet during pregnancy or lactation affects health outcomes in the offspring may lead to new maternal nutrition recommendations, disease prevention strategies and therapies that reduce the increasing incidence of cardiometabolic disease in children. Recent mechanistic animal model research has identified how excess fats and sugars in the maternal diet alter offspring glucose tolerance, insulin signaling and metabolism. Maternal nutrition appears to influence epigenetic alterations in the offspring and the programming of gene expression in key metabolic pathways. This review is focused on experimental studies in animal models that have investigated mechanisms of how maternal consumption of macronutrients affects cardiometabolic disease development in the offspring. Future research using "-omic" technologies is essential to elucidate the mechanisms of how altered maternal macronutrient consumption influences the development of disease in the offspring.


Subject(s)
Maternal Nutritional Physiological Phenomena , Metabolic Diseases/etiology , Prenatal Exposure Delayed Effects/etiology , Animals , Dietary Carbohydrates/adverse effects , Dietary Carbohydrates/metabolism , Dietary Fats/adverse effects , Dietary Fats/metabolism , Female , Humans , Metabolic Diseases/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism
10.
J Neuroinflammation ; 14(1): 80, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28388927

ABSTRACT

BACKGROUND: Birth cohort studies link gestational diabetes mellitus (GDM) with impaired cognitive performance in the offspring. However, the mechanisms involved are unknown. We tested the hypothesis that obesity-associated GDM induces chronic neuroinflammation and disturbs the development of neuronal circuitry resulting in impaired cognitive abilities in the offspring. METHODS: In rats, GDM was induced by feeding dams a diet high in sucrose and fatty acids. Brains of neonatal (E20) and young adult (15-week-old) offspring of GDM and lean dams were analyzed by immunohistochemistry, cytokine assay, and western blotting. Young adult offspring of GDM and lean dams went also through cognitive assessment. Cultured microglial responses to elevated glucose and/or fatty acids levels were analyzed. RESULTS: In rats, impaired recognition memory was observed in the offspring of GDM dams. GDM exposure combined with a postnatal high-fat and sucrose diet resulted in atypical inattentive behavior in the offspring. These cognitive changes correlated with reduced density and derangement of Cornu Ammonis 1 pyramidal neuronal layer, decreased hippocampal synaptic integrity, increased neuroinflammatory status, and reduced expression of CX3CR1, the microglial fractalkine receptor regulating microglial pro-inflammatory responses and synaptic pruning. Primary microglial cultures that were exposed to high concentrations of glucose and/or palmitate were transformed into an activated, amoeboid morphology with increased nitric oxide and superoxide production, and altered their cytokine release profile. CONCLUSIONS: These findings demonstrate that GDM stimulates microglial activation and chronic inflammatory responses in the brain of the offspring that persist into young adulthood. Reactive gliosis correlates positively with hippocampal synaptic decline and cognitive impairments. The elevated pro-inflammatory cytokine expression at the critical period of hippocampal synaptic maturation suggests that neuroinflammation might drive the synaptic and cognitive decline in the offspring of GDM dams. The importance of microglia in this process is supported by the reduced Cx3CR1 expression as an indication of the loss of microglial control of inflammatory responses and phagocytosis and synaptic pruning in GDM offspring.


Subject(s)
Cognition/physiology , Diabetes, Gestational/metabolism , Hippocampus/metabolism , Inflammation Mediators/metabolism , Neurons/metabolism , Prenatal Exposure Delayed Effects/metabolism , Animals , Cells, Cultured , Diabetes, Gestational/pathology , Diet, High-Fat/adverse effects , Dietary Sucrose/administration & dosage , Dietary Sucrose/adverse effects , Female , Hippocampus/pathology , Inflammation/metabolism , Inflammation/pathology , Male , Neurons/pathology , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Random Allocation , Rats , Rats, Sprague-Dawley
11.
Biochem Cell Biol ; 93(5): 438-51, 2015 10.
Article in English | MEDLINE | ID: mdl-25673017

ABSTRACT

The incidence of obesity and type 2 diabetes mellitus have risen across the world during the past few decades and has also reached an alarming level among children. In addition, women are currently more likely than ever to enter pregnancy obese. As a result, the incidence of gestational diabetes mellitus is also on the rise. While diet and lifestyle contribute to these trends, population health data show that maternal obesity and diabetes during pregnancy during critical stages of development are major factors that contribute to the development of chronic disease in adolescent and adult offspring. Fetal programming of metabolic function, through physiological and (or) epigenetic mechanisms, may also have an intergenerational effect, and as a result may perpetuate metabolic disorders in the next generation. In this review, we summarize the existing literature that characterizes how maternal obesity and gestational diabetes mellitus contribute to metabolic and cardiovascular disorders in the offspring. In particular, we focus on animal studies that investigate the molecular mechanisms that are programmed by the gestational environment and lead to disease phenotypes in the offspring. We also review interventional studies that prevent disease with a developmental origin in the offspring.


Subject(s)
Cardiovascular Diseases/metabolism , Diabetes, Gestational/metabolism , Obesity/metabolism , Overnutrition/metabolism , Prenatal Exposure Delayed Effects/metabolism , Animals , Female , Humans , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...