Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(2)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38399284

ABSTRACT

Human serum alpha-1-acid glycoprotein (AAG) is an acute-phase plasma protein involved in the binding and transport of many drugs, especially basic and lipophilic substances. The sialic acid groups that terminate the N-glycan chains of AAG have been reported to change in response to numerous health conditions and may have an impact on the binding of drugs to AAG. In this study, we quantified the binding between native and desialylated AAG and seven drugs from different pharmacotherapeutic groups (carvedilol, diltiazem, dipyridamole, imipramine, lidocaine, propranolol, vinblastine) using microscale thermophoresis (MST). This method was chosen due to its robustness and high sensitivity, allowing precise quantification of molecular interactions based on the thermophoretic movement of fluorescent molecules. Detailed glycan analysis of native and desialylated AAG showed over 98% reduction in sialic acid content for the enzymatically desialylated AAG. The MST results indicate that desialylation generally alters the binding affinity between AAG and drugs, leading to either an increase or decrease in Kd values, probably due to conformational changes of AAG caused by the different sialic acid content. This effect is also reflected in an increased denaturation temperature of desialylated AAG. Our findings indicate that desialylation impacts free drug concentrations differently, depending on the binding affinity of the drug with AAG relative to human serum albumin (HSA). For drugs such as dipyridamole, lidocaine, and carvedilol, which have a higher affinity for AAG, desialylation significantly changes free drug concentrations. In contrast, drugs such as propranolol, imipramine, and vinblastine, which have a strong albumin binding, show only minimal changes. It is noteworthy that the free drug concentration of dipyridamole is particularly sensitive to changes in AAG concentration and glycosylation, with a decrease of up to 15% being observed, underscoring the need for dosage adjustments in personalized medicine.

2.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239819

ABSTRACT

Human serum alpha-1 acid glycoprotein is an acute-phase plasma protein involved in the binding and transport of many drugs, especially basic and lipophilic substances. It has been reported that the sialic acid groups that terminate the N-glycan chains of alpha-1 acid glycoprotein change in response to certain health conditions and may have a major impact on drug binding to alpha-1 acid glycoprotein. The interaction between native or desialylated alpha-1 acid glycoprotein and four representative drugs-clindamycin, diltiazem, lidocaine, and warfarin-was quantitatively evaluated using isothermal titration calorimetry. The calorimetry assay used here is a convenient and widely used approach to directly measure the amount of heat released or absorbed during the association processes of biomolecules in solution and to quantitatively estimate the thermodynamics of the interaction. The results showed that the binding of drugs with alpha-1 acid glycoprotein were enthalpy-driven exothermic interactions, and the binding affinity was in the range of 10-5-10-6 M. Desialylated alpha-1 acid glycoprotein showed significantly different binding with diltiazem, lidocaine, and warfarin compared with native alpha-1 acid glycoprotein, whereas clindamycin showed no significant difference. Therefore, a different degree of sialylation may result in different binding affinities, and the clinical significance of changes in sialylation or glycosylation of alpha-1 acid glycoprotein in general should not be neglected.


Subject(s)
Clindamycin , Warfarin , Humans , Protein Binding , Warfarin/pharmacology , Diltiazem , Calorimetry/methods , Orosomucoid/metabolism , Thermodynamics , Drug Interactions
3.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901918

ABSTRACT

This study demonstrates that sterigmatocystin (STC) interacts non-covalently with various cyclodextrins (CDs), showing the highest binding affinity for sugammadex (a γ-CD derivative) and γ-CD, and an almost order of magnitude lower affinity for ß-CD. This difference in affinity was studied using molecular modelling and fluorescence spectroscopy, which demonstrated a better insertion of STC into larger CDs. In parallel, we showed that STC binds to human serum albumin (HSA) (a blood protein known for its role as a transporter of small molecules) with an almost two order of magnitude lower affinity compared to sugammadex and γ-CD. Competitive fluorescence experiments clearly demonstrated an efficient displacement of STC from the STC-HSA complex by cyclodextrins. These results are a proof-of-concept that CDs can be used to complex STC and related mycotoxins. Similarly, as sugammadex extracts neuromuscular relaxants (e.g., rocuronium and vecuronium) from blood and blocks their bioactivity, it could also be used as first aid upon acute intoxication to encapsulate a larger part of the STC mycotoxin from serum albumin.


Subject(s)
Cyclodextrins , Humans , Cyclodextrins/chemistry , Sugammadex , Sterigmatocystin , Serum Albumin , Rocuronium , Serum Albumin, Human
4.
Heliyon ; 7(9): e08030, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34611562

ABSTRACT

Low-pressure pH gradient ion exchange separation provides a fast, simple and cost-effective method for preparative purification of native and desialylated apo-transferrin. The method enables easy monitoring of the extent of the desialylation reaction and also the efficient separation and purification of protein fractions after desialylation. The N-glycan analysis shows that the modified desialylation protocol successfully reduces the content of the sialylated fractions relative to the native apo-transferrin. In the optimized protocol, the desialylation capacity is increased by 150 %, compared to the original protocol provided by the manufacturer. The molar absorption coefficients in the near-UV region for the native and desialylated apo-transferrin differ by several percent, suggesting a subtle dependence of the glycoprotein absorbance on the variable sialic acid content. The method can easily be modified for other glycoproteins and is particularly appropriate for quick testing of sialic acid content in the protein glycosylation patterns prior to further verification by mass spectrometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...