Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 11248, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045571

ABSTRACT

The myeloid inhibitory receptor CLEC12A negatively regulates inflammation. Reduced CLEC12A expression enhances inflammation in CLEC12A knock-out mice with collagen antibody-induced arthritis. Moreover, CLEC12A internalisation augments human neutrophil activation. We thus postulated that CLEC12A expression on circulating myeloid cells of rheumatoid arthritis patients is associated with disease manifestations. Cell-surface, CLEC12A receptor expression was determined on circulating neutrophils and monocytes of eRA patients and of healthy donors. Generalized estimating equations model, Student's t-test and Spearman's correlations were performed to compare CLEC12A expression between groups and test its association with disease activity and clinical parameters. Plasma cytokines were measured by multiplex immunoassay. Patients with reduced neutrophil or monocyte CLEC12A expression at baseline and at 3 months have an increased simple disease activity index. Low baseline CLEC12A expression also correlates with a higher SDAI at 6 months. In contrast, positive correlations were observed between baseline CLEC12A expression and several cytokines. Moreover, neutrophil and monocyte CLEC12A expression is significantly higher in early rheumatoid arthritis patients at baseline than healthy controls. Circulating neutrophil and monocyte CLEC12A expression correlates with disease activity at baseline and is predictive of SDAI at later stages of the disease indicative of a regulatory role for CLEC12A in RA.


Subject(s)
Arthritis, Rheumatoid/metabolism , Cytokines/blood , Lectins, C-Type/metabolism , Myeloid Cells/metabolism , Receptors, Mitogen/metabolism , Aged , Arthritis, Rheumatoid/diagnosis , Female , Humans , Male , Middle Aged , Monocytes/metabolism , Neutrophil Activation , Neutrophils/metabolism , Severity of Illness Index
2.
Environ Res ; 196: 110336, 2021 05.
Article in English | MEDLINE | ID: mdl-33091430

ABSTRACT

Bisphenol A (BPA) and its main substitute, bisphenol S (BPS), are synthetic organic compounds found in various consumer products, in particular food and beverage containers. Numerous reports have shown a link between bisphenol exposure, human contamination and increased health problems. BPA, BPS and their metabolites are detectable in bodily fluids (blood, urine) and were reported to affect immune cells and their responses. Though, the impact of those chemicals on neutrophils, the most abundant leukocytes in the circulation, remains poorly described. Therefore, we examined the effects of BPA, BPS and their monoglucuronide conjugates on neutrophil energy metabolism and anti-microbial functions, mainly phagocytosis, superoxide anion generation and CXCL8/IL-8 chemokine production. We observed that short and prolonged exposures of neutrophils to these chemicals modulate the basal and the bacterium-derived peptide N-formyl-methionyl-leucyl-phenylalanine-induced glycolysis, with BPS causing the most alterations. The variation in energy metabolism was not associated with dysfunctions in cell cytotoxicity, phagocytosis, nor superoxide anion production upon exposure to bisphenols. In contrast, bisphenols significantly reduced the production of CXCL8/IL-8 by neutrophils, an effect found to be greater with the glucuronidated metabolites. Our study highlights that BPA, BPS and their glucuronidated metabolites alter the energy metabolism and certain anti-microbial responses of neutrophils, with possible health implications. Importantly, we found that BPS and the glucuronidated metabolites of BPA and BPS showed higher endocrine-disrupting potential than BPA. More studies on bisphenols, especially the less-documented BPS and bisphenol metabolites, are needed to fully determine their risks, allow better regulation of these compounds, and restrict their extensive usage.


Subject(s)
Benzhydryl Compounds , Neutrophils , Benzhydryl Compounds/toxicity , Glycolysis , Humans , Phenols , Sulfones
SELECTION OF CITATIONS
SEARCH DETAIL
...