Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 38(Database issue): D563-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19884133

ABSTRACT

Ensembl Genomes (http://www.ensemblgenomes.org) is a new portal offering integrated access to genome-scale data from non-vertebrate species of scientific interest, developed using the Ensembl genome annotation and visualisation platform. Ensembl Genomes consists of five sub-portals (for bacteria, protists, fungi, plants and invertebrate metazoa) designed to complement the availability of vertebrate genomes in Ensembl. Many of the databases supporting the portal have been built in close collaboration with the scientific community, which we consider as essential for maintaining the accuracy and usefulness of the resource. A common set of user interfaces (which include a graphical genome browser, FTP, BLAST search, a query optimised data warehouse, programmatic access, and a Perl API) is provided for all domains. Data types incorporated include annotation of (protein and non-protein coding) genes, cross references to external resources, and high throughput experimental data (e.g. data from large scale studies of gene expression and polymorphism visualised in their genomic context). Additionally, extensive comparative analysis has been performed, both within defined clades and across the wider taxonomy, and sequence alignments and gene trees resulting from this can be accessed through the site.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Animals , Computational Biology/trends , Gene Expression , Genome, Bacterial , Genome, Fungal , Genome, Plant , Information Storage and Retrieval/methods , Internet , Invertebrates/genetics , Polymorphism, Genetic , Protein Structure, Tertiary , Software
2.
Nature ; 435(7038): 43-57, 2005 May 05.
Article in English | MEDLINE | ID: mdl-15875012

ABSTRACT

The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.


Subject(s)
Dictyostelium/genetics , Genome , Genomics , Social Behavior , ATP-Binding Cassette Transporters/genetics , Animals , Base Composition , Cell Adhesion/genetics , Cell Movement/genetics , Centromere/genetics , Conserved Sequence/genetics , DNA Transposable Elements/genetics , DNA, Ribosomal/genetics , Dictyostelium/cytology , Dictyostelium/enzymology , Dictyostelium/metabolism , Eukaryotic Cells/metabolism , Gene Duplication , Gene Transfer, Horizontal/genetics , Humans , Molecular Sequence Data , Phylogeny , Proteome , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , RNA, Transfer/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA , Signal Transduction/genetics , Telomere/genetics
3.
Genome Biol ; 4(10): R63, 2003.
Article in English | MEDLINE | ID: mdl-14519198

ABSTRACT

BACKGROUND: Tsetse flies transmit African trypanosomiasis leading to half a million cases annually. Trypanosomiasis in animals (nagana) remains a massive brake on African agricultural development. While trypanosome biology is widely studied, knowledge of tsetse flies is very limited, particularly at the molecular level. This is a serious impediment to investigations of tsetse-trypanosome interactions. We have undertaken an expressed sequence tag (EST) project on the adult tsetse midgut, the major organ system for establishment and early development of trypanosomes. RESULTS: A total of 21,427 ESTs were produced from the midgut of adult Glossina morsitans morsitans and grouped into 8,876 clusters or singletons potentially representing unique genes. Putative functions were ascribed to 4,035 of these by homology. Of these, a remarkable 3,884 had their most significant matches in the Drosophila protein database. We selected 68 genes with putative immune-related functions, macroarrayed them and determined their expression profiles following bacterial or trypanosome challenge. In both infections many genes are downregulated, suggesting a malaise response in the midgut. Trypanosome and bacterial challenge result in upregulation of different genes, suggesting that different recognition pathways are involved in the two responses. The most notable block of genes upregulated in response to trypanosome challenge are a series of Toll and Imd genes and a series of genes involved in oxidative stress responses. CONCLUSIONS: The project increases the number of known Glossina genes by two orders of magnitude. Identification of putative immunity genes and their preliminary characterization provides a resource for the experimental dissection of tsetse-trypanosome interactions.


Subject(s)
Aging/genetics , Expressed Sequence Tags , Gastrointestinal Tract/metabolism , Gene Expression Profiling , Genes, Insect/genetics , Immunity/genetics , Tsetse Flies/genetics , Aging/immunology , Animals , Databases, Protein , Drosophila Proteins , Female , Gastrointestinal Tract/immunology , Gene Expression Regulation , Gene Library , Host-Parasite Interactions , Male , Oligonucleotide Array Sequence Analysis , Oxidative Stress/genetics , Serine Endopeptidases/genetics , Serine Proteinase Inhibitors/genetics , Tissue Adhesions/genetics , Trypanosoma/physiology , Tsetse Flies/enzymology , Tsetse Flies/immunology , Tsetse Flies/parasitology
4.
Nature ; 419(6906): 527-31, 2002 Oct 03.
Article in English | MEDLINE | ID: mdl-12368867

ABSTRACT

Since the sequencing of the first two chromosomes of the malaria parasite, Plasmodium falciparum, there has been a concerted effort to sequence and assemble the entire genome of this organism. Here we report the sequence of chromosomes 1, 3-9 and 13 of P. falciparum clone 3D7--these chromosomes account for approximately 55% of the total genome. We describe the methods used to map, sequence and annotate these chromosomes. By comparing our assemblies with the optical map, we indicate the completeness of the resulting sequence. During annotation, we assign Gene Ontology terms to the predicted gene products, and observe clustering of some malaria-specific terms to specific chromosomes. We identify a highly conserved sequence element found in the intergenic region of internal var genes that is not associated with their telomeric counterparts.


Subject(s)
DNA, Protozoan , Plasmodium falciparum/genetics , Animals , Base Sequence , Chromosomes , Genes, Protozoan , Genome, Protozoan , Molecular Sequence Data , Multigene Family , Proteome , Protozoan Proteins/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...