Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 159: 114228, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36623448

ABSTRACT

BACKGROUND: Canagliflozin (CANA) shows anti-inflammatory and anti-oxidative effects on endothelial cells (ECs). In diabetes mellitus (DM), excessive reactive oxygen species (ROS) generation, increased intracellular calcium (Ca2+) and enhanced extracellular signal regulated kinase (ERK) 1/2 phosphorylation are crucial precursors for inflammasome activation. We hypothesized that: (1) CANA prevents the TNF-α triggered ROS generation in ECs from diabetic donors and in turn suppresses the inflammasome activation; and (2) the anti-inflammatory effect of CANA is mediated via intracellular Ca2+ and ERK1/2. METHODS: Human coronary artery endothelial cells from donors with DM (D-HCAECs) were pre-incubated with either CANA or vehicle for 2 h before exposure to 50 ng/ml TNF-α for 2-48 h. NAC was applied to scavenge ROS, BAPTA-AM to chelate intracellular Ca2+, and PD 98059 to inhibit the activation of ERK1/2. Live cell imaging was performed at 6 h to measure ROS and intracellular Ca2+. At 48 h, ELISA and infra-red western blot were applied to detect IL-1ß, NLRP3, pro-caspase-1 and ASC. RESULTS: 10 µM CANA significantly reduced TNF-α related ROS generation, IL-1ß production and NLRP3 expression (P all <0.05), but NAC did not alter the inflammasome activation (P > 0.05). CANA and BAPTA both prevented intracellular Ca2+ increase in cells exposed to TNF-α (P both <0.05). Moreover, BAPTA and PD 98059 significantly reduced the TNF-α triggered IL-1ß production as well as NLRP3 and pro-caspase-1 expression (P all <0.05). CONCLUSION: CANA suppresses inflammasome activation by inhibition of (1) intracellular Ca2+ and (2) ERK1/2 phosphorylation, but not by ROS reduction.


Subject(s)
Diabetes Mellitus , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Canagliflozin/pharmacology , Calcium , Endothelial Cells/metabolism , Caspase 1/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha , Signal Transduction , Interleukin-1beta/metabolism
2.
Int J Mol Sci ; 22(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205045

ABSTRACT

SGLT-2i's exert direct anti-inflammatory and anti-oxidative effects on resting endothelial cells. However, endothelial cells are constantly exposed to mechanical forces such as cyclic stretch. Enhanced stretch increases the production of reactive oxygen species (ROS) and thereby impairs endothelial barrier function. We hypothesized that the SGLT-2i's empagliflozin (EMPA), dapagliflozin (DAPA) and canagliflozin (CANA) exert an anti-oxidative effect and alleviate cyclic stretch-induced endothelial permeability in human coronary artery endothelial cells (HCAECs). HCAECs were pre-incubated with one of the SGLT-2i's (1 µM EMPA, 1 µM DAPA and 3 µM CANA) for 2 h, followed by 10% stretch for 24 h. HCAECs exposed to 5% stretch were considered as control. Involvement of ROS was measured using N-acetyl-l-cysteine (NAC). The sodium-hydrogen exchanger 1 (NHE1) and NADPH oxidases (NOXs) were inhibited by cariporide, or GKT136901, respectively. Cell permeability and ROS were investigated by fluorescence intensity imaging. Cell permeability and ROS production were increased by 10% stretch; EMPA, DAPA and CANA decreased this effect significantly. Cariporide and GKT136901 inhibited stretch-induced ROS production but neither of them further reduced ROS production when combined with EMPA. SGLT-2i's improve the barrier dysfunction of HCAECs under enhanced stretch and this effect might be mediated through scavenging of ROS. Anti-oxidative effect of SGLT-2i's might be partially mediated by inhibition of NHE1 and NOXs.


Subject(s)
Endothelial Cells/drug effects , Inflammation/drug therapy , Oxidative Stress/drug effects , Sodium-Glucose Transport Proteins/antagonists & inhibitors , Sodium-Hydrogen Exchanger 1/antagonists & inhibitors , Benzhydryl Compounds/pharmacology , Canagliflozin/pharmacology , Cell Membrane Permeability/drug effects , Endothelial Cells/metabolism , Glucosides/pharmacology , Guanidines/pharmacology , Humans , Inflammation/genetics , Inflammation/pathology , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/genetics , Oxidative Stress/genetics , Pyrazoles/pharmacology , Pyridones/pharmacology , Reactive Oxygen Species/metabolism , Sodium-Glucose Transport Proteins/genetics , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Hydrogen Exchanger 1/genetics , Stress, Mechanical , Sulfones/pharmacology
3.
Cell Physiol Biochem ; 53(5): 865-886, 2019.
Article in English | MEDLINE | ID: mdl-31724838

ABSTRACT

BACKGROUND/AIMS: Heart failure is characterized by chronic low-grade vascular inflammation, which in itself can lead to endothelial dysfunction. Clinical trials showed reductions in heart failure-related hospitalizations of type 2 diabetic patients using sodium glucose co-transporter 2 inhibitors (SGLT2i's). Whether and how SGLT2i's directly affect the endothelium under inflammatory conditions is not completely understood. The aim of the study was to investigate whether the SGLT2i Empagliflozin (EMPA) and Dapagliflozin (DAPA) reduce tumor necrosis factor α (TNFα) induced endothelial inflammation in vitro. METHODS: Human coronary arterial endothelial cells (HCAECs) and human umbilical vein endothelial cells (HUVECs) were (pre-)incubated with 1 µM EMPA or DAPA and subsequently exposed to 10 ng/ml TNFα. ROS and NO were measured using live cell imaging. Target proteins were either determined by infrared western blotting or fluorescence activated cell sorting (FACS). The connection between Cav-1 and eNOS was determined by co-immunoprecipitation. RESULTS: Nitric oxide (NO) bioavailability was reduced by TNFα and both EMPA and DAPA restored NO levels in TNFα-stimulated HCAECs. Intracellular ROS was increased by TNFα, and this increase was completely abolished by EMPA and DAPA in HCAECs by means of live cell imaging. eNOS signaling was significantly disturbed after 24 h when cells were exposed to TNFα for 24h, yet the presence of both SGLT2is did not prevent this disruption. TNFα-induced enhanced permeability at t=24h was unaffected in HUVECs by EMPA. Similarly, adhesion molecule expression (VCAM-1 and ICAM-1) was elevated after 4h TNFα (1.5-5.5 fold increase of VCAM-1 and 4-12 fold increase of ICAM-1) but were unaffected by EMPA and DAPA in both cell types. Although we detected expression of SGLT2 protein levels, the fact that we could not silence this expression by means of siRNA and the mRNA levels of SGLT2 were not detectable in HCAECs, suggests aspecificity or our SGLT2 antibody and absence of SGLT2 in our cells. CONCLUSION: These data suggest that EMPA and DAPA rather restore NO bioavailability by inhibiting ROS generation than by affecting eNOS expression or signaling, barrier function and adhesion molecules expression in TNFα-induced endothelial cells. Furthermore, the observed effects cannot be ascribed to the inhibition of SGLT2 in endothelial cells.


Subject(s)
Benzhydryl Compounds/pharmacology , Down-Regulation/drug effects , Glucosides/pharmacology , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Coronary Vessels/cytology , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Intercellular Adhesion Molecule-1/metabolism , Nitric Oxide Synthase Type III/metabolism , Permeability/drug effects , Signal Transduction/drug effects , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism , Vascular Cell Adhesion Molecule-1
4.
Int J Mol Sci ; 20(11)2019 May 29.
Article in English | MEDLINE | ID: mdl-31146391

ABSTRACT

The noble gas helium (He) induces cardioprotection in vivo through unknown molecular mechanisms. He can interact with and modify cellular membranes. Caveolae are cholesterol and sphingolipid-enriched invaginations of the plasma-membrane-containing caveolin (Cav) proteins that are critical in protection of the heart. Mice (C57BL/6J) inhaled either He gas or adjusted room air. Functional measurements were performed in the isolated Langendorff perfused heart at 24 h post He inhalation. Electron paramagnetic resonance spectrometry (EPR) of samples was carried out at 24 h post He inhalation. Immunoblotting was used to detect Cav-1/3 expression in whole-heart tissue, exosomes isolated from platelet free plasma (PFP) and membrane fractions. Additionally, transmission electron microscopy analysis of cardiac tissue and serum function and metabolomic analysis were performed. In contrast to cardioprotection observed in in vivo models, the isolated Langendorff perfused heart revealed no protection after He inhalation. However, levels of Cav-1/3 were reduced 24 h after He inhalation in whole-heart tissue, and Cav-3 was increased in exosomes from PFP. Addition of serum to muscle cells in culture or naïve ventricular tissue increased mitochondrial metabolism without increasing reactive oxygen species generation. Primary and lipid metabolites determined potential changes in ceramide by He exposure. In addition to direct effects on myocardium, He likely induces the release of secreted membrane factors enriched in caveolae. Our results suggest a critical role for such circulating factors in He-induced organ protection.


Subject(s)
Cardiotonic Agents/pharmacology , Caveolins/metabolism , Heart/drug effects , Helium/pharmacology , Myocardial Reperfusion Injury/drug therapy , Animals , Cardiotonic Agents/therapeutic use , Caveolae/drug effects , Caveolae/metabolism , Caveolins/blood , Caveolins/genetics , Cells, Cultured , Exosomes/drug effects , Exosomes/metabolism , Helium/therapeutic use , Male , Mice , Mice, Inbred C57BL , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/prevention & control
5.
Sci Rep ; 8(1): 4768, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29555979

ABSTRACT

Caveolins are involved in anaesthetic-induced cardioprotection. Actin filaments are located in close connection to Caveolins in the plasma membrane. We hypothesised that helium might affect the cytoskeleton and induce secretion of Caveolin. HCAEC, HUVEC and Cav-1 siRNA transfected HUVEC were exposed for 20 minutes to either helium (5% CO2, 25% O2, 70% He) or control gas (5% CO2, 25% O2, 70% N2). Cells and supernatants were collected for infrared Western blot analysis, immunofluorescence staining, nanoparticle tracking analysis and permeability measurements. Helium treatment increased the cortical localisation of F-actin fibers in HUVEC. After 6 hours, helium decreased cellular Caveolin-1 (Cav-1) levels and increased Cav-1 levels in the supernatant. Cell permeability was decreased 6 and 12 hours after helium treatment, and increased levels of Vascular Endothelial - Cadherin (VE-Cadherin) and Connexin 43 (Cx43) were observed. Transfection with Cav-1 siRNA abolished the effects of helium treatment on VE-Cadherin, Cx43 levels and permeability. Supernatant obtained after helium treatment reduced cellular permeability in remote HUVEC, indicating that increased levels of Cav-1 are responsible for the observed alterations. These findings suggest that Cav-1 is secreted after helium exposure in vitro, altering the cytoskeleton and increasing VE-Cadherin and Cx43 expression resulting in decreased permeability in HUVEC.


Subject(s)
Caveolin 1/metabolism , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Endothelial Cells/drug effects , Helium/pharmacology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Connexin 43/metabolism , Dose-Response Relationship, Drug , Endothelial Cells/cytology , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Permeability/drug effects
6.
Eur J Pharmacol ; 791: 718-725, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27742593

ABSTRACT

Caveolae, lipid enriched invaginations of the plasma membrane, are epicentres of cellular signal transduction. The structural proteins of caveolae, caveolins, regulate effector pathways in anaesthetic-induced cardioprotection, including the RISK pathway. Helium (He) postconditioning (HePoc) is known to mimic anaesthetic conditioning and to prevent damage from myocardial infarction. We hypothesize that HePoc regulates caveolin-1 and caveolin-3 (Cav-1 and Cav-3) expression in the rat heart and activates the RISK pathway. Male Wistar rats (n=8, each group) were subjected to 25min of cardiac ischaemia followed by reperfusion (I/R) for 5, 15 or 30min (I/R 5/15/30). The HePoc groups underwent I/R with 70% helium ventilation during reperfusion (IR+He 5/15/30min). Sham animals received surgical treatment without I/R. After each protocol blood and hearts were retrieved. Tissue was obtained from the area-at-risk (AAR) and non-area-at-risk (NAAR) and processed for western blot analyses and reverse-transcription-real-time-polymerase-chain-reaction (RT-qPCR). Protein analyses revealed increased amounts of Cav-1 and Cav-3 in the membrane of I/R+He15 (AAR: Cav-1, P<0.05; Cav-3, P<0.05; both vs. I/R15). In serum, Cav-3 was found to be elevated in I/R+He15 (P<0.05 vs. I/R15). RT-qPCR showed increased expression of Cav-1 in IR+He15 in AAR tissue (P<0.05 vs. I/R15). Phosphorylation of RISK pathway proteins pERK1/2 (AAR: P<0.05 vs. I/R15) and pAKT (AAR: P<0.05; NAAR P<0.05; both vs. I/R15) was elevated in the cytosolic fraction of I/R+He15. These results suggest that 15min of HePoc regulates Cav-1 and Cav-3 and activates RISK pathway kinases ERK1/2 and AKT. These processes might be crucially involved in HePoc mediated cardioprotection.


Subject(s)
Caveolins/metabolism , Gene Expression Regulation/drug effects , Helium/pharmacology , Ischemic Postconditioning , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Protein Kinases/metabolism , Animals , Caveolin 1/genetics , Caveolin 1/metabolism , Caveolin 3/genetics , Caveolin 3/metabolism , Caveolins/genetics , Male , Myocardial Reperfusion Injury/metabolism , Myocardium/pathology , Protein Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects
7.
J Transl Med ; 14(1): 294, 2016 10 14.
Article in English | MEDLINE | ID: mdl-27737678

ABSTRACT

BACKGROUND: The noble gas helium induces pre- and postconditioning in animals and humans. Volatile anesthetics induce cardioprotection in humans undergoing coronary artery bypass graft (CABG) surgery. We hypothesized that helium induces pre- and postconditioning in CABG-patients, affecting signaling molecules protein kinase C-epsilon (PKC-ε), p38 mitogen activated protein kinase (p38 MAPK), extracellular signal-regulated kinase 1/2 (ERK-1/2) and heat shock protein 27 (HSP-27) within cardiac tissue, and reducing postoperative troponin levels. METHODS: After ethical approval and informed consent, 125 elective patients undergoing CABG surgery were randomised into this prospective, placebo controlled, investigator blinded, parallel arm single-centre study. Helium preconditioning (3 × 5 min of 70 % helium and 30 % oxygen) was applied before aortic cross clamping; postconditioning (15 min of helium) was applied before release of the aortic cross clamp. Signaling molecules were measured in right atrial appendix specimens. Troponin-T was measured at 4, 12, 24 and 48 h postoperatively. RESULTS: Baseline characteristics of all groups were similar. Helium preconditioning did not significantly alter the primary outcome (molecular levels of kinases PKC-ε and HSP-27, ratio of activated p38 MAPK or ERK ½). Postoperative troponin T was 11 arbitrary units [5, 31; area-under-the-curve (interquartile range)] for controls, and no statistically significant changes were observed after helium preconditioning [He-pre: 11 (6, 18)], helium postconditioning [He-post: 11 (8, 15)], helium pre- and postconditioning [He-PP: 14 (6, 20)] and after sevoflurane preconditioning [APC: 12 (8, 24), p = 0.13]. No adverse effects related to study treatment were observed in this study. CONCLUSIONS: No effect was observed of helium preconditioning, postconditioning or the combination thereof on activation of p38 MAPK, ERK 1/2 or levels of HSP27 and PKC-ε in the human heart. Helium pre- and postconditioning did not affect postoperative troponin release in patients undergoing CABG surgery. Clinical trial number Dutch trial register ( http://www.trialregister.nl/ ) number NTR1226.


Subject(s)
Coronary Artery Bypass , Helium/pharmacology , Ischemic Postconditioning , Protein Kinases/metabolism , Signal Transduction/drug effects , Aged , Cytosol/drug effects , Cytosol/enzymology , Demography , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , HSP27 Heat-Shock Proteins/metabolism , Heat-Shock Proteins , Hemodynamics/drug effects , Humans , Ischemic Preconditioning, Myocardial , Male , Middle Aged , Molecular Chaperones , Phosphorylation/drug effects , Protein Kinase C-epsilon/metabolism , Troponin T/blood , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Exp Cell Res ; 337(1): 37-43, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26096659

ABSTRACT

Helium induces preconditioning in human endothelium protecting against postischemic endothelial dysfunction. Circulating endothelial microparticles are markers of endothelial dysfunction derived in response to injury. Another noble gas, xenon, protected human umbilical vein endothelial cells (HUVEC) against inflammatory stress in vitro. We hypothesised that helium protects the endothelium in vitro against inflammatory and oxidative stress. HUVEC were isolated from fresh umbilical cords and grown upon confluence. Cells were subjected to starving medium for 12h before the experiment and treated for either 3 × 5 min or 1 × 30 min with helium (5% CO2, 25% O2, 70% He) or control gas (5% CO2, 25% O2, 70% N2) in a specialised gas chamber. Subsequently, cells were stimulated with TNF-α (40 ng/ml for 24h or 10 ng/ml for 2h) or H2O2 (500 µM for 2h) or left untreated. Adhesion molecule expression was analysed using real-time quantitative polymerase chain reaction. Caspase-3 expression and viability of the cells was measured by flowcytometry. Microparticles were investigated by nanoparticle tracking analysis. Helium had no effect on adhesion molecule expression after TNF-α stimulation but in combination with oxidative stress decreased cell viability (68.9 ± 1.3% and 58 ± 1.9%) compared to control. Helium further increased TNF-α induced release of caspase-3 containing particles compared to TNF-α alone (6.4 × 10(6) ± 1.1 × 10(6) and 2.9 × 10(6) ± 0.7 × 10(6), respectively). Prolonged exposure of helium increased microparticle formation (2.4 × 10(9) ± 0.5 × 10(9)) compared to control (1.7 × 10(9) ± 0.2 × 10(9)). Summarized, helium increases inflammatory and oxidative stress-induced endothelial damage and is thus not biologically inert. A possible noxious effects on the cellular level causing alterations in microparticle formation both in number and content should be acknowledged.


Subject(s)
Cardiovascular Agents/pharmacology , Helium/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Oxidative Stress/drug effects , Apoptosis , Caspase 3/metabolism , Cell-Derived Microparticles/metabolism , Cells, Cultured , Drug Evaluation, Preclinical , E-Selectin/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Intercellular Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
9.
J Immunol Res ; 2015: 216798, 2015.
Article in English | MEDLINE | ID: mdl-25759838

ABSTRACT

Postconditioning of myocardial tissue employs short cycles of ischemia or pharmacologic agents during early reperfusion. Effects of helium postconditioning protocols on infarct size and the ischemia/reperfusion-induced immune response were investigated by measurement of protein and mRNA levels of proinflammatory cytokines. Rats were anesthetized with S-ketamine (150 mg/kg) and diazepam (1.5 mg/kg). Regional myocardial ischemia/reperfusion was induced; additional groups inhaled 15, 30, or 60 min of 70% helium during reperfusion. Fifteen minutes of helium reduced infarct size from 43% in control to 21%, whereas 30 and 60 minutes of helium inhalation led to an infarct size of 47% and 39%, respectively. Increased protein levels of cytokine-induced neutrophil chemoattractant (CINC-3) and interleukin-1 beta (IL-1ß) were found after 30 or 60 min of helium inhalation, in comparison to control. 30 min of helium increased mRNA levels of CINC-3, IL-1ß, interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) in myocardial tissue not directly subjected to ischemia/reperfusion. These results suggest that the effectiveness of the helium postconditioning protocol is very sensitive to duration of noble gas application. Additionally, helium was associated with higher levels of inflammatory cytokines; however, it is not clear whether this is causative of nature or part of an epiphenomenon.


Subject(s)
Cytokines/metabolism , Helium/administration & dosage , Inflammation Mediators/metabolism , Ischemic Postconditioning , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Animals , Biomarkers , Cytokines/genetics , Disease Models, Animal , Gene Expression , Hemodynamics , L-Lactate Dehydrogenase/metabolism , Male , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Rats , Time Factors , Troponin T/metabolism
10.
PLoS One ; 8(5): e63497, 2013.
Article in English | MEDLINE | ID: mdl-23717435

ABSTRACT

Sepsis is characterized by a generalized inflammatory response and organ failure, associated with mitochondrial dysfunction. Hydrogen sulfide donor NaHS has anti-inflammatory properties, is able to reduce metabolism and can preserve mitochondrial morphology and function. Rats were challenged with live Streptococcus pneumonia or saline and infused with NaHS (36 µmol/kg/h) or vehicle. Lung and kidney injury markers were measured as well as mitochondrial function, viability and biogenesis. Infusion of NaHS reduced heart rate and body temperature, indicative of a hypo-metabolic state. NaHS infusion reduced sepsis-related lung and kidney injury, while host defense remained intact, as reflected by unchanged bacterial outgrowth. The reduction in organ injury was associated with a reversal of a fall in active oxidative phosphorylation with a concomitant decrease in ATP levels and ATP/ADP ratio. Preservation of mitochondrial respiration was associated with increased mitochondrial expression of α-tubulin and protein kinase C-ε, which acts as regulators of respiration. Mitochondrial damage was decreased by NaHS, as suggested by a reduction in mitochondrial DNA leakage in the lung. Also, NaHS treatment was associated with upregulation of peroxisome proliferator-activated receptor-γ coactivator 1α, with a subsequent increase in transcription of mitochondrial respiratory subunits. These findings indicate that NaHS reduces organ injury in pneumosepsis, possibly via preservation of oxidative phosphorylation and thereby ATP synthesis as well as by promoting mitochondrial biogenesis. Further studies on the involvement of mitochondria in sepsis are required.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Energy Metabolism , Lung Injury/prevention & control , Pneumonia, Pneumococcal/drug therapy , Sulfides/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Electron Transport Complex I/metabolism , Heart Rate/drug effects , Kidney/drug effects , Kidney/physiopathology , Liver/drug effects , Liver/metabolism , Lung Injury/metabolism , Lung Injury/microbiology , Mitochondria/metabolism , Mitochondrial Turnover/drug effects , Oxidation-Reduction , Pneumonia, Pneumococcal/metabolism , Pneumonia, Pneumococcal/physiopathology , Protein Kinase C-epsilon/metabolism , Rats , Rats, Sprague-Dawley , Sepsis , Sulfides/therapeutic use , Tubulin/metabolism , Up-Regulation
11.
Gastrointest Endosc ; 56(6): 852-7, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12447297

ABSTRACT

BACKGROUND: Early diagnosis of esophageal cancer limited to the mucosa allows local endoscopic treatment and thereby improves prognosis. Optical coherence tomography images of normal human esophageal tissue obtained with 2 systems with light sources that provide different wavelengths (800 nm and 1275 nm) were compared with histology to determine which wavelength is best suited for detailed optical coherence tomography imaging of the esophageal wall, and to precisely localize the muscularis mucosae. METHODS: Within 1 hour of surgical resection, an esophageal specimen was cleaned of excess blood with saline solution and soaked in formalin for a minimum of 48 hours. After optical coherence tomography imaging, the specimen was prepared for routine histologic assessment. To precisely localize the different layers of the esophageal wall on an optical coherence tomography image, well-defined structures within the esophageal wall were sought. RESULTS: The 1275 nm system with 12 mm resolution was superior in terms of imaging depth. As compared with histology, the 4 microm resolution of the 800 nm system made fine detail more visible. With minimal experience, the muscularis mucosae could be recognized with either system as a hyporeflective layer with a diameter of around 180 microm. CONCLUSIONS: Based on appearance and location of morphologic landmarks, layers of normal esophageal wall, specifically, the location and extent of the muscularis mucosae, could be recognized by using both the 800 nm and 1275 nm optical coherence tomography system. Although different conditions may be operative in vivo, the present ex vivo study further verifies by precise interpretation that optical coherence tomography provides precise images of the esophageal wall.


Subject(s)
Esophagus/anatomy & histology , Tomography/methods , Humans , Mucous Membrane/anatomy & histology , Muscle, Smooth/anatomy & histology , Optics and Photonics , Tomography/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...