Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanoscale Adv ; 2(8): 3323-3333, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-36134299

ABSTRACT

Microbial production of iron (oxyhydr)oxides on polysaccharide rich biopolymers occurs on such a vast scale that it impacts the global iron cycle and has been responsible for major biogeochemical events. Yet the physiochemical controls these biopolymers exert on iron (oxyhydr)oxide formation are poorly understood. Here we used dynamic force spectroscopy to directly probe binding between complex, model and natural microbial polysaccharides and common iron (oxyhydr)oxides. Applying nucleation theory to our results demonstrates that if there is a strong attractive interaction between biopolymers and iron (oxyhydr)oxides, the biopolymers decrease the nucleation barriers, thus promoting mineral nucleation. These results are also supported by nucleation studies and density functional theory. Spectroscopic and thermogravimetric data provide insight into the subsequent growth dynamics and show that the degree and strength of water association with the polymers can explain the influence on iron (oxyhydr)oxide transformation rates. Combined, our results provide a mechanistic basis for understanding how polymer-mineral-water interactions alter iron (oxyhydr)oxides nucleation and growth dynamics and pave the way for an improved understanding of the consequences of polymer induced mineralization in natural systems.

2.
Nat Commun ; 8(1): 835, 2017 10 10.
Article in English | MEDLINE | ID: mdl-29018200

ABSTRACT

Crystallization by particle attachment is impacting our understanding of natural mineralization processes and holds promise for novel materials design. When particles assemble in crystallographic alignment, expulsion of the intervening solvent and particle coalescence are enabled by near-perfect co-alignment via interparticle forces that remain poorly quantified. Here we report measurement and simulation of these nanoscale aligning forces for the ZnO(0001)-ZnO(000[Formula: see text]) system in aqueous solution. Dynamic force spectroscopy using nanoengineered single crystal probes reveals an attractive force with 60o rotational periodicity. Calculated distance and orientation-dependent potentials of mean force show several attractive free energy wells distinguished by numbers of intervening water layers, which reach a minimum when aligned. The calculated activation energy to separate the attractively bound solvated interfaces perfectly reproduces the measured 60o periodicity, revealing the key role of intervening water structuring as a basis to generate the interparticle torque that completes alignment and enables coalescence.Crystal growth is a fundamental process, important in a wide range of fields, but the interparticle forces responsible for molecule alignment are not well understood. Here, the authors measure the alignment forces in ZnO using dynamic force spectroscopy, highlighting the role of intervening water molecules.

SELECTION OF CITATIONS
SEARCH DETAIL