Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Neurobiol Dis ; 191: 106398, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182075

ABSTRACT

Parkinson's disease (PD) is characterized by the progressive and asymmetrical degeneration of the nigrostriatal dopamine neurons and the unilateral presentation of the motor symptoms at onset, contralateral to the most impaired hemisphere. We previously developed a rat PD model that mimics these typical features, based on unilateral injection of a substrate inhibitor of excitatory amino acid transporters, L-trans-pyrrolidine-2,4-dicarboxylate (PDC), in the substantia nigra (SN). Here, we used this progressive model in a multilevel study (behavioral testing, in vivo 1H-magnetic resonance spectroscopy, slice electrophysiology, immunocytochemistry and in situ hybridization) to characterize the functional changes occurring in the cortico-basal ganglia-cortical network in an evolving asymmetrical neurodegeneration context and their possible contribution to the cell death progression. We focused on the corticostriatal input and the subthalamic nucleus (STN), two glutamate components with major implications in PD pathophysiology. In the striatum, glutamate and glutamine levels increased from presymptomatic stages in the PDC-injected hemisphere only, which also showed enhanced glutamatergic transmission and loss of plasticity at corticostriatal synapses assessed at symptomatic stage. Surprisingly, the contralateral STN showed earlier and stronger reactivity than the ipsilateral side (increased intraneuronal cytochrome oxidase subunit I mRNA levels; enhanced glutamate and glutamine concentrations). Moreover, its lesion at early presymptomatic stage halted the ongoing neurodegeneration in the PDC-injected SN and prevented the expression of motor asymmetry. These findings reveal the existence of endogenous interhemispheric processes linking the primary injured SN and the contralateral STN that could sustain progressive dopamine neuron loss, opening new perspectives for disease-modifying treatment of PD.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , Subthalamic Nucleus , Rats , Animals , Dopaminergic Neurons/metabolism , Dopamine/metabolism , Glutamine/metabolism , Parkinsonian Disorders/metabolism , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Glutamates/metabolism , Oxidopamine/pharmacology
2.
Cell Rep ; 40(1): 111034, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35793632

ABSTRACT

Striatal cholinergic interneurons (CINs) respond to salient or reward prediction-related stimuli after conditioning with brief pauses in their activity, implicating them in learning and action selection. This pause is lost in animal models of Parkinson's disease. How this signal regulates the striatal network remains an open question. Here, we examine the impact of CIN firing inhibition on glutamatergic transmission between the cortex and the medium spiny neurons expressing dopamine D1 receptor (D1 MSNs). Brief interruption of CIN activity has no effect in control conditions, whereas it increases glutamatergic responses in D1 MSNs after dopamine denervation. This potentiation depends upon M4 muscarinic receptor and protein kinase A. Decreasing CIN firing by optogenetics/chemogenetics in vivo partially rescues long-term potentiation in MSNs and motor learning deficits in parkinsonian mice. Our findings demonstrate that the control exerted by CINs on corticostriatal transmission and striatal-dependent motor-skill learning depends on the integrity of dopaminergic inputs.


Subject(s)
Interneurons , Parkinsonian Disorders , Animals , Cholinergic Agents/metabolism , Corpus Striatum/metabolism , Dopamine/metabolism , Interneurons/metabolism , Mice , Neurons/metabolism , Parkinsonian Disorders/metabolism
4.
Transl Psychiatry ; 12(1): 106, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35292625

ABSTRACT

We previously linked TSHZ3 haploinsufficiency to autism spectrum disorder (ASD) and showed that embryonic or postnatal Tshz3 deletion in mice results in behavioral traits relevant to the two core domains of ASD, namely social interaction deficits and repetitive behaviors. Here, we provide evidence that cortical projection neurons (CPNs) and striatal cholinergic interneurons (SCINs) are two main and complementary players in the TSHZ3-linked ASD syndrome. In the cerebral cortex, TSHZ3 is expressed in CPNs and in a proportion of GABAergic interneurons, but not in cholinergic interneurons or glial cells. In the striatum, TSHZ3 is expressed in all SCINs, while its expression is absent or partial in the other main brain cholinergic systems. We then characterized two new conditional knockout (cKO) models generated by crossing Tshz3flox/flox with Emx1-Cre (Emx1-cKO) or Chat-Cre (Chat-cKO) mice to decipher the respective role of CPNs and SCINs. Emx1-cKO mice show altered excitatory synaptic transmission onto CPNs and impaired plasticity at corticostriatal synapses, with neither cortical neuron loss nor abnormal layer distribution. These animals present social interaction deficits but no repetitive patterns of behavior. Chat-cKO mice exhibit no loss of SCINs but changes in the electrophysiological properties of these interneurons, associated with repetitive patterns of behavior without social interaction deficits. Therefore, dysfunction in either CPNs or SCINs segregates with a distinct ASD behavioral trait. These findings provide novel insights onto the implication of the corticostriatal circuitry in ASD by revealing an unexpected neuronal dichotomy in the biological background of the two core behavioral domains of this disorder.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Haploinsufficiency , Interneurons , Mice , Synapses
5.
J Neurosci Res ; 100(6): 1370-1385, 2022 06.
Article in English | MEDLINE | ID: mdl-35355316

ABSTRACT

Accumulating evidence implicates the parafascicular nucleus of the thalamus (Pf) in basal ganglia (BG)-related functions and pathologies. Despite Pf connectivity with all BG components, most attention is focused on the thalamostriatal system and an integrated view of thalamic information processing in this network is still lacking. Here, we addressed this question by recording the responses elicited by Pf activation in single neurons of the substantia nigra pars reticulata (SNr), the main BG output structure in rodents, in anesthetized mice. We performed optogenetic activation of Pf neurons innervating the striatum, the subthalamic nucleus (STN), or the SNr using virally mediated transcellular delivery of Cre from injection in either target in Rosa26-LoxP-stop-ChR2-EYFP mice to drive channelrhodopsin expression. Photoactivation of Pf neurons connecting the striatum evoked an inhibition often followed by an excitation, likely resulting from the activation of the trans-striatal direct and indirect pathways, respectively. Photoactivation of Pf neurons connecting the SNr or the STN triggered one or two early excitations, suggesting partial functional overlap of trans-subthalamic and direct thalamonigral projections. Excitations were followed in about half of the cases by an inhibition that might reflect recruitment of intranigral inhibitory loops. Finally, global Pf stimulation, electrical or optogenetic, elicited similar complex responses comprising up to four components: one or two short-latency excitations, an inhibition, and a late excitation. These data provide evidence for functional connections between the Pf and different BG components and for convergence of the information processed through these pathways in single SNr neurons, stressing their importance in regulating BG outflow.


Subject(s)
Intralaminar Thalamic Nuclei , Subthalamic Nucleus , Animals , Basal Ganglia/physiology , Corpus Striatum/physiology , Intralaminar Thalamic Nuclei/physiology , Mice , Neural Pathways/physiology , Thalamus/physiology
6.
Cell Death Dis ; 12(5): 460, 2021 05 08.
Article in English | MEDLINE | ID: mdl-33966044

ABSTRACT

TP53INP1 is a stress-induced protein, which acts as a dual positive regulator of transcription and of autophagy and whose deficiency has been linked with cancer and metabolic syndrome. Here, we addressed the unexplored role of TP53INP1 and of its Drosophila homolog dDOR in the maintenance of neuronal homeostasis under chronic stress, focusing on dopamine (DA) neurons under normal ageing- and Parkinson's disease (PD)-related context. Trp53inp1-/- mice displayed additional loss of DA neurons in the substantia nigra compared to wild-type (WT) mice, both with ageing and in a PD model based on targeted overexpression of α-synuclein. Nigral Trp53inp1 expression of WT mice was not significantly modified with ageing but was markedly increased in the PD model. Trp53inp2 expression showed similar evolution and did not differ between WT and Trp53inp1-/- mice. In Drosophila, pan-neuronal dDOR overexpression improved survival under paraquat exposure and mitigated the progressive locomotor decline and the loss of DA neurons caused by the human α-synuclein A30P variant. dDOR overexpression in DA neurons also rescued the locomotor deficit in flies with RNAi-induced downregulation of dPINK1 or dParkin. Live imaging, confocal and electron microscopy in fat bodies, neurons, and indirect flight muscles showed that dDOR acts as a positive regulator of basal autophagy and mitophagy independently of the PINK1-mediated pathway. Analyses in a mammalian cell model confirmed that modulating TP53INP1 levels does not impact mitochondrial stress-induced PINK1/Parkin-dependent mitophagy. These data provide the first evidence for a neuroprotective role of TP53INP1/dDOR and highlight its involvement in the regulation of autophagy and mitophagy in neurons.


Subject(s)
Carrier Proteins/metabolism , Heat-Shock Proteins/metabolism , Neuroprotection/genetics , Parkinson Disease/genetics , Stress, Physiological/genetics , Age Factors , Animals , Humans , Mice
7.
Stem Cells Transl Med ; 10(5): 725-742, 2021 05.
Article in English | MEDLINE | ID: mdl-33528918

ABSTRACT

Enhancing the differentiation potential of human induced pluripotent stem cells (hiPSC) into disease-relevant cell types is instrumental for their widespread application in medicine. Here, we show that hiPSCs downregulated for the signaling modulator GLYPICAN-4 (GPC4) acquire a new biological state characterized by increased hiPSC differentiation capabilities toward ventral midbrain dopaminergic (VMDA) neuron progenitors. This biological trait emerges both in vitro, upon exposing cells to VMDA neuronal differentiation signals, and in vivo, even when transplanting hiPSCs at the extreme conditions of floor-plate stage in rat brains. Moreover, it is compatible with the overall neuronal maturation process toward acquisition of substantia nigra neuron identity. HiPSCs with downregulated GPC4 also retain self-renewal and pluripotency in stemness conditions, in vitro, while losing tumorigenesis in vivo as assessed by flank xenografts. In conclusion, our results highlight GPC4 downregulation as a powerful approach to enhance generation of VMDA neurons. Outcomes may contribute to establish hiPSC lines suitable for translational applications.


Subject(s)
Cell Differentiation , Dopaminergic Neurons , Glypicans , Induced Pluripotent Stem Cells , Animals , Cells, Cultured , Dopaminergic Neurons/cytology , Down-Regulation , Glypicans/genetics , Heterografts , Humans , Induced Pluripotent Stem Cells/cytology , Mesencephalon , Neural Stem Cells/cytology , Rats
8.
Glia ; 68(10): 2028-2039, 2020 10.
Article in English | MEDLINE | ID: mdl-32170887

ABSTRACT

Glial cells have a major role in protecting neurons against various forms of stress. Especially, astrocytes mediate the bulk of glutamate clearance in the brain via specific membrane transporters (GLAST and GLT1), thereby preventing the occurrence of excitotoxic events. Although glutamate-mediated mechanisms are thought to contribute to nigral dopaminergic neuron degeneration in Parkinson's disease, detailed information on the organization of glia in the substantia nigra is still lacking. The present study was performed to provide quantitative information on the organization of astroglia and on the relationships between astrocytes and excitatory synapses in the rat substantia nigra. Using immunolabeling of GLT1 and confocal imaging, we found that the substantia nigra was filled with a dense meshwork of immunoreactive astrocyte processes. Stereological analysis performed on electron microscope images revealed that the density of immunoreactive astrocyte plasma membranes was substantial, close to 1 µm2 /µm3 , in the substantia nigra neuropil, both in the pars compacta and the pars reticulata. Excitatory synapses had on average two thirds of their perimeters free from glia, a disposition that may favor transmitter spillover. The density of glutamatergic synapses, as quantified on confocal images by the simultaneous detection of bassoon and of vesicular glutamate transporter 1 or 2, was very low (0.01 and 0.025 per µm3 in the reticulata and compacta subdivisions, respectively). Thus the ratio of GLT1-expressing glial membrane surface to glutamatergic synapses was very high (40-100 µm2 ), suggesting an efficient regulation of extracellular glutamate concentrations.


Subject(s)
Excitatory Amino Acid Transporter 2/biosynthesis , Neuroglia/metabolism , Substantia Nigra/metabolism , Synapses/metabolism , Animals , Excitatory Amino Acid Transporter 2/ultrastructure , Male , Neuroglia/ultrastructure , Rats , Rats, Wistar , Substantia Nigra/ultrastructure , Synapses/ultrastructure
9.
Mov Disord ; 35(4): 616-628, 2020 04.
Article in English | MEDLINE | ID: mdl-31930749

ABSTRACT

BACKGROUND: Apathy is one of the most disabling neuropsychiatric symptoms in Parkinson's disease (PD) patients and has a higher prevalence in patients under subthalamic nucleus deep brain stimulation. Indeed, despite its effectiveness for alleviating PD motor symptoms, its neuropsychiatric repercussions have not yet been fully uncovered. Because it can be alleviated by dopaminergic therapies, especially D2 and D3 dopaminergic receptor agonists, the commonest explanation proposed for apathy after subthalamic nucleus deep brain stimulation is a too-strong reduction in dopaminergic treatments. The objective of this study was to determine whether subthalamic nucleus deep brain stimulation can induce apathetic behaviors, which remains an important matter of concern. We aimed to unambiguously address this question of the motivational effects of chronic subthalamic nucleus deep brain stimulation. METHODS: We longitudinally assessed the motivational effects of chronic subthalamic nucleus deep brain stimulation by using innovative wireless microstimulators, allowing continuous stimulation of the subthalamic nucleus in freely moving rats and a pharmacological therapeutic approach. RESULTS: We showed for the first time that subthalamic nucleus deep brain stimulation induces a motivational deficit in naive rats and intensifies those existing in a rodent model of PD neuropsychiatric symptoms. As reported from clinical studies, this loss of motivation was fully reversed by chronic treatment with pramipexole, a D2 and D3 dopaminergic receptor agonist. CONCLUSIONS: Taken together, these data provide experimental evidence that chronic subthalamic nucleus deep brain stimulation by itself can induce loss of motivation, reminiscent of apathy, independently of the dopaminergic neurodegenerative process or reduction in dopamine replacement therapy, presumably reflecting a dopaminergic-driven deficit. Therefore, our data help to clarify and reconcile conflicting clinical observations by highlighting some of the mechanisms of the neuropsychiatric side effects induced by chronic subthalamic nucleus deep brain stimulation. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Apathy , Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Animals , Dopamine Agonists/pharmacology , Humans , Parkinson Disease/therapy , Rats
10.
Behav Genet ; 50(1): 26-40, 2020 01.
Article in English | MEDLINE | ID: mdl-31542842

ABSTRACT

Modeling in other organism species is one of the crucial stages in ascertaining the association between gene and psychiatric disorder. Testing Autism Spectrum Disorder (ASD) in mice is very popular but construct validity of the batteries is not available. We presented here the first factor analysis of a behavioral model of ASD-like in mice coupled with empirical validation. We defined fourteen measures aligning mouse-behavior measures with the criteria defined by DSM-5 for the diagnostic of ASD. Sixty-five mice belonging to a heterogeneous pool of genotypes were tested. Reliability coefficients vary from .68 to .81. The factor analysis resulted in a three- factor solution in line with DSM criteria: social behavior, stereotypy and narrowness of the field of interest. The empirical validation with mice sharing a haplo-insufficiency of the zinc-finger transcription factor TSHZ3/Tshz3 associated with ASD shows the discriminant power of the highly loaded items.


Subject(s)
Autism Spectrum Disorder/physiopathology , Disease Models, Animal , Reproducibility of Results , Animals , Attention/physiology , Autism Spectrum Disorder/metabolism , Autistic Disorder/metabolism , Autistic Disorder/physiopathology , Factor Analysis, Statistical , Haploinsufficiency , Homeodomain Proteins/metabolism , Male , Mice , Mice, Inbred Strains , Social Behavior , Stereotyped Behavior/physiology , Transcription Factors/metabolism
11.
Biol Psychiatry ; 86(4): 274-285, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31060802

ABSTRACT

BACKGROUND: Heterozygous deletion of the TSHZ3 gene, encoding for the teashirt zinc-finger homeobox family member 3 (TSHZ3) transcription factor that is highly expressed in cortical projection neurons (CPNs), has been linked to an autism spectrum disorder (ASD) syndrome. Similarly, mice with Tshz3 haploinsufficiency show ASD-like behavior, paralleled by molecular changes in CPNs and corticostriatal synaptic dysfunctions. Here, we aimed at gaining more insight into "when" and "where" TSHZ3 is required for the proper development of the brain, and its deficiency crucial for developing this ASD syndrome. METHODS: We generated and characterized a novel mouse model of conditional Tshz3 deletion, obtained by crossing Tshz3flox/flox with CaMKIIalpha-Cre mice, in which Tshz3 is deleted in CPNs from postnatal day 2 to 3 onward. We characterized these mice by a multilevel approach combining genetics, cell biology, electrophysiology, behavioral testing, and bioinformatics. RESULTS: These conditional Tshz3 knockout mice exhibit altered cortical expression of more than 1000 genes, ∼50% of which have their human orthologue involved in ASD, in particular genes encoding for glutamatergic synapse components. Consistently, we detected electrophysiological and synaptic changes in CPNs and impaired corticostriatal transmission and plasticity. Furthermore, these mice showed strong ASD-like behavioral deficits. CONCLUSIONS: Our study reveals a crucial postnatal role of TSHZ3 in the development and functioning of the corticostriatal circuitry and provides evidence that dysfunction in these circuits might be determinant for ASD pathogenesis. Our conditional Tshz3 knockout mouse constitutes a novel ASD model, opening the possibility for an early postnatal therapeutic window for the syndrome linked to TSHZ3 haploinsufficiency.


Subject(s)
Autism Spectrum Disorder/genetics , Homeodomain Proteins/genetics , Synapses/genetics , Transcription Factors/genetics , Animals , Autism Spectrum Disorder/pathology , Behavior, Animal , Chromosome Deletion , Chromosomes, Human, Pair 19 , Disease Models, Animal , Female , Gene Deletion , Gene Expression Regulation, Developmental , Haploinsufficiency , Heterozygote , Humans , Male , Mice , Mice, Knockout
12.
Brain Struct Funct ; 224(1): 363-372, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30341742

ABSTRACT

Recent studies have suggested deep brain stimulation (DBS) as a promising therapy in patients with Alzheimer's disease (AD). Particularly, the stimulation of the forniceal area was found to slow down the cognitive decline of some AD patients, but the biochemical and anatomical modifications underlying these effects remain poorly understood. We evaluated the effects of chronic forniceal stimulation on amyloid burden, inflammation, and neuronal loss in a transgenic Alzheimer rat model TgF344-AD, as well as in age-matched control rats. 18-month-old rats were surgically implanted with electrodes in stereotactic conditions and connected to a portable microstimulator for chronic DBS in freely moving rats. The stimulation was continuous during 5 weeks and animals were immediately sacrificed for immunohistochemical analysis of pathological markers. Implanted, but non-stimulated rats were used as controls. We found that chronic forniceal DBS in the Tg-AD rat significantly reduces amyloid deposition in the hippocampus and cortex, decreases astrogliosis and microglial activation and lowers neuronal loss, as determined by NeuN staining. In control animals, the stimulation neither affects neuroinflammation nor neuronal count. In the Tg-F344-AD rat model, 5 weeks of forniceal DBS decreased amyloidosis, inflammatory responses, and neuronal loss in both cortex and hippocampus. These findings strongly suggest a neuroprotective effect of DBS and support the beneficial effects of targeting the fornix in Alzheimer's disease patients.


Subject(s)
Alzheimer Disease/therapy , Brain/pathology , Deep Brain Stimulation/methods , Fornix, Brain , Inflammation/therapy , Nerve Degeneration , Neurons/pathology , Plaque, Amyloid , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Rats, Inbred F344 , Rats, Transgenic , Time Factors
13.
J Neurosci ; 36(35): 9161-72, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27581457

ABSTRACT

UNLABELLED: Over the last decade, striatal cholinergic interneurons (ChIs) have reemerged as key actors in the pathophysiology of basal-ganglia-related movement disorders. However, the mechanisms involved are still unclear. In this study, we address the role of ChI activity in the expression of parkinsonian-like motor deficits in a unilateral nigrostriatal 6-hydroxydopamine (6-OHDA) lesion model using optogenetic and pharmacological approaches. Dorsal striatal photoinhibition of ChIs in lesioned ChAT(cre/cre) mice expressing halorhodopsin in ChIs reduces akinesia, bradykinesia, and sensorimotor neglect. Muscarinic acetylcholine receptor (mAChR) blockade by scopolamine produces similar anti-parkinsonian effects. To decipher which of the mAChR subtypes provides these beneficial effects, systemic and intrastriatal administration of the selective M1 and M4 mAChR antagonists telenzepine and tropicamide, respectively, were tested in the same model of Parkinson's disease. The two compounds alleviate 6-OHDA lesion-induced motor deficits. Telenzepine produces its beneficial effects by blocking postsynaptic M1 mAChRs expressed on medium spiny neurons (MSNs) at the origin of the indirect striatopallidal and direct striatonigral pathways. The anti-parkinsonian effects of tropicamide were almost completely abolished in mutant lesioned mice that lack M4 mAChRs specifically in dopamine D1-receptor-expressing neurons, suggesting that postsynaptic M4 mAChRs expressed on direct MSNs mediate the antiakinetic action of tropicamide. The present results show that altered cholinergic transmission via M1 and M4 mAChRs of the dorsal striatum plays a pivotal role in the occurrence of motor symptoms in Parkinson's disease. SIGNIFICANCE STATEMENT: The striatum, where dopaminergic and cholinergic systems interact, is the pivotal structure of basal ganglia involved in pathophysiological changes underlying Parkinson's disease. Here, using optogenetic and pharmacological approaches, we investigated the involvement of striatal cholinergic interneurons (ChIs) and muscarinic receptor subtypes (mAChRs) in the occurrence of a wide range of motor deficits such as akinesia, bradykinesia, motor coordination, and sensorimotor neglect after unilateral nigrostriatal 6-hydroxydopamine lesion in mice. Our results show that photoinhibition of ChIs in the dorsal striatum and pharmacological blockade of muscarinic receptors, specifically postsynaptic M1 and M4 mAChRs, alleviate lesion-induced motor deficits. The present study points to these receptor subtypes as potential targets for the symptomatic treatment of parkinsonian-like motor symptoms.


Subject(s)
Cholinergic Neurons/physiology , Corpus Striatum/pathology , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M4/metabolism , Adrenergic Agents/toxicity , Amphetamine/pharmacology , Analysis of Variance , Animals , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Functional Laterality , Genotype , Hypokinesia/chemically induced , Levodopa/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Optogenetics , Oxidopamine/toxicity , Parkinson Disease/etiology , Transduction, Genetic
14.
PLoS One ; 11(6): e0157052, 2016.
Article in English | MEDLINE | ID: mdl-27272053

ABSTRACT

LAMP5 is member of the LAMP family of membrane proteins. In contrast to the canonical members of this protein family, LAMP1 and LAMP2, which show widespread expression in many tissues, LAMP 5 is brain specific in mice. In C. elegans, the LAMP5 ortholog UNC-46 has been suggested to act a trafficking chaperone, essential for the correct targeting of the nematode vesicular GABA-transporter UNC-47. We show here that in the mouse brain LAMP5 is expressed in subpopulations of GABAergic forebrain neurons in the striato-nigral system and the olfactory bulb. The protein was present at synaptic terminals, overlapping with the mammalian vesicular GABA-transporter VGAT. In LAMP5-deficient mice localization of the transporter was unaffected arguing against a conserved role in VGAT trafficking. Electrophysiological analyses in mutants showed alterations in short term synaptic plasticity suggesting that LAMP5 is involved in controlling the dynamics of evoked GABAergic transmission. At the behavioral level, LAMP5 mutant mice showed decreased anxiety and deficits in olfactory discrimination. Altogether, this work implicates LAMP5 function in GABAergic neurotransmission in defined neuronal subpopulations.


Subject(s)
GABAergic Neurons/metabolism , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Presynaptic Terminals/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism , Animals , Corpus Striatum/metabolism , Male , Mice , Olfactory Bulb/metabolism , Substantia Nigra/metabolism , Synaptic Transmission
15.
J Neurochem ; 136(5): 1004-16, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26576509

ABSTRACT

The long-term effects and action mechanisms of subthalamic nucleus (STN) high-frequency stimulation (HFS) for Parkinson's disease still remain poorly characterized, mainly due to the lack of experimental models relevant to clinical application. To address this issue, we performed a multilevel study in freely moving hemiparkinsonian rats undergoing 5-week chronic STN HFS, using a portable constant-current microstimulator. In vivo metabolic neuroimaging by (1) H-magnetic resonance spectroscopy (11.7 T) showed that STN HFS normalized the tissue levels of the neurotransmission-related metabolites glutamate, glutamine and GABA in both the striatum and substantia nigra reticulata (SNr), which were significantly increased in hemiparkinsonian rats, but further decreased nigral GABA levels below control values; taurine levels, which were not affected in hemiparkinsonian rats, were significantly reduced. Slice electrophysiological recordings revealed that STN HFS was, uniquely among antiparkinsonian treatments, able to restore both forms of corticostriatal synaptic plasticity, i.e. long-term depression and potentiation, which were impaired in hemiparkinsonian rats. Behavior analysis (staircase test) showed a progressive recovery of motor skill during the stimulation period. Altogether, these data show that chronic STN HFS efficiently counteracts metabolic and synaptic defects due to dopaminergic lesion in both the striatum and SNr. Comparison of chronic STN HFS with acute and subchronic treatment further suggests that the long-term benefits of this treatment rely both on the maintenance of acute effects and on delayed actions on the basal ganglia network. We studied the effects of chronic (5 weeks) continuous subthalamic nucleus (STN) high-frequency stimulation (HFS) in hemiparkinsonian rats. The levels of glutamate and GABA in the striatum () and substantia nigra reticulata (SNr) (), measured by in vivo proton magnetic resonance spectroscopy ((1) H-MRS), were increased by 6-hydroxydopamine (6-OHDA) lesion, which also disrupted corticostriatal synaptic plasticity () and impaired forepaw skill () in the staircase test. Five-week STN HFS normalized glutamate and GABA levels and restored both synaptic plasticity and motor function. A partial behavioral recovery was observed at 2-week STN HFS.


Subject(s)
Basal Ganglia/metabolism , Behavior, Animal/drug effects , Deep Brain Stimulation , Neuronal Plasticity/drug effects , Substantia Nigra/metabolism , Subthalamic Nucleus/metabolism , Animals , Basal Ganglia/physiopathology , Corpus Striatum/metabolism , Corpus Striatum/physiopathology , Deep Brain Stimulation/methods , Dopamine/metabolism , Glutamic Acid/metabolism , Oxidopamine/pharmacology , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Rats , Substantia Nigra/physiopathology , Subthalamic Nucleus/physiopathology , Time
16.
PLoS One ; 10(11): e0142838, 2015.
Article in English | MEDLINE | ID: mdl-26571268

ABSTRACT

Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson's disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease.


Subject(s)
Basal Ganglia/physiopathology , Bee Venoms/pharmacology , Disease Models, Animal , Motor Activity/drug effects , Motor Cortex/physiopathology , Parkinson Disease/drug therapy , Parkinson Disease/physiopathology , Action Potentials/drug effects , Animals , Basal Ganglia/drug effects , Bee Venoms/administration & dosage , Bee Venoms/therapeutic use , Catalepsy/complications , Catalepsy/drug therapy , Catalepsy/physiopathology , Dopamine Antagonists/pharmacology , Electric Stimulation , Haloperidol , Male , Motor Cortex/drug effects , Oxidopamine , Parkinson Disease/complications , Rats, Wistar , Receptors, Dopamine/metabolism , Substantia Nigra/drug effects , Substantia Nigra/physiopathology
17.
Cell Rep ; 13(4): 657-666, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26489458

ABSTRACT

Despite evidence showing that anticholinergic drugs are of clinical relevance in Parkinson's disease (PD), the causal role of striatal cholinergic interneurons (CINs) in PD pathophysiology remains elusive. Here, we show that optogenetic inhibition of CINs alleviates motor deficits in PD mouse models, providing direct demonstration for their implication in parkinsonian motor dysfunctions. As neural correlates, CIN inhibition in parkinsonian mice differentially impacts the excitability of striatal D1 and D2 medium spiny neurons, normalizes pathological bursting activity in the main basal ganglia output structure, and increases the functional weight of the direct striatonigral pathway in cortical information processing. By contrast, CIN inhibition in non-lesioned mice does not affect locomotor activity, equally modulates medium spiny neuron excitability, and does not modify spontaneous or cortically driven activity in the basal ganglia output, suggesting that the role of these interneurons in motor function is highly dependent on dopamine tone.


Subject(s)
Basal Ganglia/cytology , Basal Ganglia/physiology , Corpus Striatum/cytology , Corpus Striatum/physiology , Interneurons/cytology , Interneurons/metabolism , Animals , Disease Models, Animal , Mice , Parkinsonian Disorders/metabolism
18.
Front Syst Neurosci ; 9: 51, 2015.
Article in English | MEDLINE | ID: mdl-25926776

ABSTRACT

In prior studies, we described the differential organization of corticostriatal and thalamostriatal inputs to the spines of direct pathway (dSPNs) and indirect pathway striatal projection neurons (iSPNs) of the matrix compartment. In the present electron microscopic (EM) analysis, we have refined understanding of the relative amounts of cortical axospinous vs. axodendritic input to the two types of SPNs. Of note, we found that individual dSPNs receive about twice as many axospinous synaptic terminals from IT-type (intratelencephalically projecting) cortical neurons as they do from PT-type (pyramidal tract projecting) cortical neurons. We also found that PT-type axospinous synaptic terminals were about 1.5 times as common on individual iSPNs as IT-type axospinous synaptic terminals. Overall, a higher percentage of IT-type terminals contacted dSPN than iSPN spines, while a higher percentage of PT-type terminals contacted iSPN than dSPN spines. Notably, IT-type axospinous synaptic terminals were significantly larger on iSPN spines than on dSPN spines. By contrast to axospinous input, the axodendritic PT-type input to dSPNs was more substantial than that to iSPNs, and the axodendritic IT-type input appeared to be meager and comparable for both SPN types. The prominent axodendritic PT-type input to dSPNs may accentuate their PT-type responsiveness, and the large size of axospinous IT-type terminals on iSPNs may accentuate their IT-type responsiveness. Using transneuronal labeling with rabies virus to selectively label the cortical neurons with direct input to the dSPNs projecting to the substantia nigra pars reticulata, we found that the input predominantly arose from neurons in the upper layers of motor cortices, in which IT-type perikarya predominate. The differential cortical input to SPNs is likely to play key roles in motor control and motor learning.

19.
J Neurochem ; 132(6): 703-12, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25533782

ABSTRACT

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficient neurosurgical treatment for advanced Parkinson's disease. Non-invasive metabolic neuroimaging during the course of DBS in animal models may contribute to our understanding of its action mechanisms. Here, DBS was adapted to in vivo proton magnetic resonance spectroscopy at 11.7 T in the rat to follow metabolic changes in main basal ganglia structures, the striatum, and the substantia nigra pars reticulata (SNr). Measurements were repeated OFF and ON acute and subchronic (7 days) STN-DBS in control and parkinsonian (6-hydroxydopamine lesion) conditions. Acute DBS reversed the increases in glutamate, glutamine, and GABA levels induced by the dopamine lesion in the striatum but not in the SNr. Subchronic DBS normalized GABA in both the striatum and SNr, and glutamate in the striatum. Taurine levels were markedly decreased under subchronic DBS in the striatum and SNr in both lesioned and unlesioned rats. Microdialysis in the striatum further showed that extracellular taurine was increased. These data reveal that STN-DBS has duration-dependent metabolic effects in the basal ganglia, consistent with development of adaptive mechanisms. In addition to counteracting defects induced by the dopamine lesion, prolonged DBS has proper effects independent of the pathological condition. Non-invasive metabolic neuroimaging might be useful to understand the physiological mechanisms of deep brain stimulation (DBS). Here, we demonstrate the feasibility of repeated high-field proton magnetic resonance spectroscopy of basal ganglia structures under subthalamic nucleus DBS in control and parkinsonian rats. Results show that DBS has both rapid and delayed effects either dependent or independent of disease state.


Subject(s)
Basal Ganglia/metabolism , Deep Brain Stimulation/trends , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/therapy , Subthalamic Nucleus/metabolism , Subthalamic Nucleus/surgery , Animals , Brain/metabolism , Magnetic Resonance Spectroscopy/methods , Male , Rats , Rats, Wistar , Time Factors
20.
Neuropsychopharmacology ; 39(11): 2662-72, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24903652

ABSTRACT

The striatum is the input structure of the basal ganglia network that contains heterogeneous neuronal populations, including two populations of projecting neurons called the medium spiny neurons (MSNs), and different types of interneurons. We developed a transgenic mouse model enabling inducible ablation of the striatonigral MSNs constituting the direct pathway by expressing the human diphtheria toxin (DT) receptor under the control of the Slc35d3 gene promoter, a gene enriched in striatonigral MSNs. DT injection into the striatum triggered selective elimination of the majority of striatonigral MSNs. DT-mediated ablation of striatonigral MSNs caused selective loss of cholinergic interneurons in the dorsal striatum but not in the ventral striatum (nucleus accumbens), suggesting a region-specific critical role of the direct pathway in striatal cholinergic neuron homeostasis. Mice with DT injection into the dorsal striatum showed altered basal and cocaine-induced locomotion and dramatic reduction of L-DOPA-induced dyskinesia in the parkinsonian condition. In addition, these mice exhibited reduced anxiety, revealing a role of the dorsal striatum in the modulation of behaviors involving an emotional component, behaviors generally associated with limbic structures. Altogether, these results highlight the implication of the direct striatonigral pathway in the regulation of heterogeneous functions from cell survival to regulation of motor and emotion-associated behaviors.


Subject(s)
Anxiety/physiopathology , Cholinergic Neurons/physiology , Corpus Striatum/physiology , Interneurons/physiology , Movement/physiology , Substantia Nigra/physiology , Animals , Antiparkinson Agents/toxicity , Cholinergic Neurons/drug effects , Cocaine/pharmacology , Corpus Striatum/drug effects , Diphtheria Toxin/toxicity , Dopamine Uptake Inhibitors/pharmacology , Dyskinesia, Drug-Induced/physiopathology , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/metabolism , Humans , Interneurons/drug effects , Levodopa/toxicity , Mice, Transgenic , Monosaccharide Transport Proteins/genetics , Movement/drug effects , Neural Pathways/drug effects , Neural Pathways/physiology , Neurotoxins/toxicity , Promoter Regions, Genetic , Substantia Nigra/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...