Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Eur J Appl Physiol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771358

ABSTRACT

PURPOSE: Autophagy and heat shock protein (HSP) response are proteostatic systems involved in the acute and adaptive responses to exercise. These systems may upregulate sequentially following cellular stress including acute exercise, however, currently few data exist in humans. This study investigated the autophagic and HSP responses to acute intense lower body resistance exercise in peripheral blood mononuclear cells (PBMCs) with and without branched-chain amino acids (BCAA) supplementation. METHODS: Twenty resistance-trained males (22.3 ± 1.5 yr; 175.4 ± .7 cm; 86.4 ± 15.6 kg) performed about of intense lower body resistance exercise and markers of autophagy and HSP70 were measured immediately post- (IPE) and 2, 4, 24, 48, and 72 h post-exercise. Prior to resistance exercise, 10 subjects were randomly assigned to BCAA supplementation of 0.22 g/kg/d for 5 days pre-exercise and up to 72 h following exercise while the other 10 subjects consumed a placebo (PLCB). RESULTS: There were no difference in autophagy markers or HSP70 expression between BCAA and PLCB groups. LC3II protein expression was significantly lower 2 and 4 h post-exercise compared to pre-exercise. LC3II: I ratio was not different at any time point compared to pre-exercise. Protein expression of p62 was lower IPE, 2, and 4 h post-exercise and elevated 24 h post-exercise. HSP70 expression was elevated 48 and 72 h post-exercise. CONCLUSIONS: Autophagy and HSP70 are upregulated in PBMCs following intense resistance exercise with autophagy increasing initially post-exercise and HSP response in the latter period. Moreover, BCAA supplementation did not affect this response.

2.
J Diet Suppl ; : 1-25, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745415

ABSTRACT

This study investigated if paraxanthine (PX) impacts energy expenditure, lipolysis and perceptual responses. In a randomized, double-blind, placebo-controlled, crossover fashion, 21 adults (13 M, 8 F; 26.0 ± 6.4 years, 174.9 ± 11.5 cm, 81.0 ± 15.7 kg body mass, 26.3 ± 3.4 kg/m2) consumed a placebo (PLA), 100 mg (PX100), 200 mg (PX200), and 300 mg of PX (PX300, enfinity®, Ingenious Ingredients, L.P. Lewisville, TX, USA). Venous blood was collected 0, 30, 60, 90, 120 and 180 min (min) after ingestion and analyzed for glycerol and free fatty acids. Resting hemodynamics, metabolic rate and perceptual indicators of hunger, appetite and anxiety were evaluated. Mixed factorial analysis of variance were used to evaluate changes time within and between groups. Heart rate decreased in PX100 compared to PLA 60 (p = .022) and 180 min (p = .001). Blood pressure did not change. Hunger ratings in PLA increased 30 (p = .05), 60 (p = .04), 90 (p = .02), and 180 min (p = .05) after ingestion when compared to PX200. PX200 increased energy expenditure (all p < .05) when compared to PLA. Rates of fat oxidation tended to increase 90 (p = .056) and 120 min (p = .066) in PX200 compared to PLA. Free fatty acids increased in PX300 compared to PLA (p = .002). Glycerol did not change. Ingestion of PX200 augmented energy expenditure and hunger ratings when compared to PLA without impacting hemodynamics or lipolysis.

3.
J Int Soc Sports Nutr ; 21(1): 2341903, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38626029

ABSTRACT

Protein supplementation often refers to increasing the intake of this particular macronutrient through dietary supplements in the form of powders, ready-to-drink shakes, and bars. The primary purpose of protein supplementation is to augment dietary protein intake, aiding individuals in meeting their protein requirements, especially when it may be challenging to do so through regular food (i.e. chicken, beef, fish, pork, etc.) sources alone. A large body of evidence shows that protein has an important role in exercising and sedentary individuals. A PubMed search of "protein and exercise performance" reveals thousands of publications. Despite the considerable volume of evidence, it is somewhat surprising that several persistent questions and misconceptions about protein exist. The following are addressed: 1) Is protein harmful to your kidneys? 2) Does consuming "excess" protein increase fat mass? 3) Can dietary protein have a harmful effect on bone health? 4) Can vegans and vegetarians consume enough protein to support training adaptations? 5) Is cheese or peanut butter a good protein source? 6) Does consuming meat (i.e., animal protein) cause unfavorable health outcomes? 7) Do you need protein if you are not physically active? 8) Do you need to consume protein ≤ 1 hour following resistance training sessions to create an anabolic environment in skeletal muscle? 9) Do endurance athletes need additional protein? 10) Does one need protein supplements to meet the daily requirements of exercise-trained individuals? 11) Is there a limit to how much protein one can consume in a single meal? To address these questions, we have conducted a thorough scientific assessment of the literature concerning protein supplementation.


Subject(s)
Dietary Proteins , Physical Endurance , Humans , Physical Endurance/physiology , Exercise/physiology , Dietary Supplements , Muscle, Skeletal/physiology
4.
Nutrients ; 16(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474848

ABSTRACT

In recent years, postbiotics have increased in popularity, but the potential relevancy of postbiotics for augmenting exercise performance, recovery, and health is underexplored. A systematic literature search of Google Scholar and PubMed databases was performed with the main objective being to identify and summarize the current body of scientific literature on postbiotic supplementation and outcomes related to exercise performance and recovery. Inclusion criteria for this systematic review consisted of peer-reviewed, randomized, double-blind, and placebo-controlled trials, with a population including healthy men or women >18 years of age. Studies required the incorporation of a postbiotic supplementation regimen and an outcome linked to exercise. Search terms included paraprobiotics, Tyndallized probiotics, ghost biotics, heat-killed probiotics, inactivated probiotics, nonviable probiotics, exercise, exercise performance, and recovery. Only investigations written in English were considered. Nine peer-reviewed manuscripts and two published abstracts from conference proceedings were included and reviewed. Supplementation periods ranged from 13 days to 12 weeks. A total of 477 subjects participated in the studies (n = 16-105/study) with reported results spanning a variety of exercise outcomes including exercise performance, recovery of lost strength, body composition, perceptual fatigue and soreness, daily logs of physical conditions, changes in mood states, and biomarkers associated with muscle damage, inflammation, immune modulation, and oxidative stress. Early evidence has provided some indication that postbiotic supplementation may help to support mood, reduce fatigue, and increase the readiness of athletes across several weeks of exercise training. However, more research is needed to further understand how postbiotics may augment health, resiliency, performance, and recovery. Future investigations should include longer supplementation periods spanning a wider variety of competitive athletes and exercising populations.


Subject(s)
Exercise , Probiotics , Male , Humans , Female , Exercise/physiology , Oxidative Stress , Athletes , Dietary Supplements , Randomized Controlled Trials as Topic
5.
Nutrients ; 16(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474845

ABSTRACT

This study compared flavored kefir (KFR) and flavored milk (MLK) as a recovery drink in endurance master athletes. Using a randomized, placebo-controlled, non-blinded crossover design, 11 males and females completed three testing visits whilst acutely ingesting either KFR, MLK, or water as a placebo (PLA). KFR supplementation occurred for 14 days before the KFR-testing day, followed by a 3-week washout period. Testing visits consisted of an exhausting-exercise (EE) bout, a 4-h rest period where additional carbohydrate feeding was provided, and a treadmill 5 km time trial (TT). The Gastrointestinal Symptom Rating Scale (GSRS) survey was assessed at four timepoints. Blood was collected at baseline and after the TT and was analyzed for I-FABP levels. No significant difference (PLA: 33:39.1 ± 6:29.0 min, KFR: 33:41.1 ± 5:44.4 min, and MLK: 33:36.2 ± 6:40.5 min, p = 0.99) was found between the groups in TT performance. The KFR GSRS total score was significantly lower than the PLA after EE (p = 0.005). No differences in I-FABP were observed between conditions. In conclusion, acute KFR supplementation did not impact TT performance or I-FABP levels but may have reduced subjective GI symptoms surrounding exercise when compared to MLK or PLA.


Subject(s)
Kefir , Running , Male , Female , Humans , Animals , Milk , Water , Athletes , Polyesters , Physical Endurance , Cross-Over Studies
6.
iScience ; 27(1): 108643, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38222109

ABSTRACT

Seven healthy, physically active men (n = 3) and women (n = 4) (30.7 ± 7.5 years, 172.7 ± 8.7 cm, 70.4 ± 11.6 kg, 23.6 ± 4.1 kg/m2, 49.2 ± 8.4 mL/kg/min) supplemented for 14 days with a placebo (PLA) or 1 × 1010 CFU doses of the probiotic Veillonella atypica FB0054 (FitBiomics, New York, NY). Participants had safety panels, hemodynamics, lactate, and anaerobic capacity assessed. Stool samples were collected to evaluate for metagenomic and metabolomic changes. Exhaustion times were not different between groups, whereas anaerobic capacity tended to shorten with PLA (61.14 ± 72.04 s; 95% CI: -5.49, 127.77 s, p = 0.066) with no change with VA (13.29 ± 100.13 s, 95% CI: -79.32, 105.89 s, p = 0.738). No changes in lactate, hemodynamics, or bacterial community changes were observed, whereas 14 metabolites exhibited differential expression patterns with VA supplementation. In conclusion, VA maintained exercise performance that tended to decline in PLA. Supplementation was well tolerated with no changes in safety markers or reported adverse events.

8.
Nutrients ; 15(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38140311

ABSTRACT

The completion of high-intensity exercise results in robust perturbations to physiologic homeostasis, challenging the body's natural buffering systems to mitigate the accumulation of metabolic by-products. Supplementation with bicarbonate has previously been used to offset metabolic acidosis, leading to improvements in anaerobic exercise performance. PURPOSE: The purpose of this study was to investigate the presence of ergogenic properties in naturally occurring low-dose bicarbonated water and their effects on anaerobic cycling performance and blood gas kinetics in recreationally active men and women. METHODS: Thirty-nine healthy, recreationally active men and women (28.1 ± 8.0 years, 169.8 ± 11.7 cm, 68.9 ± 10.8 kg, 20.1 ± 7.9% fat, V˙O2peak: 42.8 ± 7.6 mL/kg/min) completed two separate testing sessions consisting of 15 cycling sprints (10 s sprint, 20 s active rest) against 7.5% of their body mass. Using a randomized, double-blind, placebo-controlled, parallel group study design, study participants consumed a 10 mL/kg dose of either spring water (SW) or bicarbonated mineral water (BMW) (delivering ~3 g/day of bicarbonate) for 7 days. Venous blood was collected before, immediately after, and 5 and 10 min after the sprint protocol and was analyzed for lactate and a series of blood gas components. After the completion of 15 cycling sprints, averages of peak and mean power for bouts 1-5, 6-10, and 11-15, along with total work for the entire cycling protocol, were calculated. All performance and blood gas parameters were analyzed using a mixed-factorial ANOVA. RESULTS: pH was found to be significantly higher in the BMW group immediately after (7.17 ± 0.09 vs. 7.20 ± 0.11; p = 0.05) and 10 min post exercise (7.21 ± 0.11 vs. 7.24 ± 0.09; p = 0.04). A similar pattern of change was observed 5 min post exercise wherein pH levels in the SW group were lower than those observed in the BMW group; however, this difference did not achieve statistical significance (p = 0.09). A statistical trend (p = 0.06) was observed wherein lactate in the BMW group tended to be lower than in the SW group 5 min post exercise. No significant main effect for time (p > 0.05) or group × time interactions (p > 0.05) for the total work, average values of peak power, or average values of mean power were observed, indicating performance was unchanged. CONCLUSION: One week of consuming water with increased bicarbonate (10 mL/kg; ~3 g/day bicarbonate) showed no effect on anaerobic cycling performance. BMW decreased blood lactate concentrations 5 min after exercise and increased blood pH immediately and 10 min after exercise.


Subject(s)
Athletic Performance , Mineral Waters , Male , Humans , Female , Bicarbonates , Anaerobiosis , Lactic Acid , Bicycling/physiology , Dietary Supplements , Double-Blind Method
9.
Nutrients ; 15(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38140393

ABSTRACT

BACKGROUND: The purpose of this study was to assess the effects of protein and carbohydrate supplementation, with and without creatine, on occupational performance in firefighters. METHODS: Using a randomized, double-blind approach, thirty male firefighters (age: 34.4 ± 8.4 yrs., height: 1.82 ± 0.07 m; weight: 88.6 ± 12.5 kg; BF%: 17.2 ± 5.8%) were randomized to receive either (A.) 25 g of whey protein isolate + 25 g of carbohydrate powder (ProCarb group); or (B.) ProCarb + 5 g of creatine (Creatine group) in a double-blind fashion over a period of 21-26 days (depending on shift rotations) to evaluate the impact of supplementation on occupation-specific performance. At baseline and following supplementation, firefighters completed a battery of tests. These tests included an aerobic speed test on an air-braked cycle ergometer followed by the hose carry, body drag, stair climb, and Keiser sled hammer for time. RESULTS: No significant differences in measures of performance were observed at baseline (p > 0.05). There was a significant main effect for time observed for rescue, stair climb, total time to completion, and time trial performance (p < 0.05). There was a significant group × time (p < 0.05) interaction for rescue and forcible entry. Independent sample t-tests indicated that the Creatine group experienced a greater reduction (from baseline) in completion time for the rescue (1.78 ± 0.57 s, 95% CI: 0.61, 2.95 s, p = 0.004) and forcible entry (2.66 ± 0.97 s, 95% CI: 0.68, 4.65 s, p = 0.01) tests compared to the ProCarb group. No significant group × time interactions were observed for the hose line advance, stair climb, total time to completion, and time trial performance (p > 0.05). CONCLUSIONS: The addition of supplemental creatine to a protein and carbohydrate supplement to the diet of career firefighters throughout a three week period improves occupational performance in firefighters in specific areas of high-intensity, repetitive actions.


Subject(s)
Creatine , Firefighters , Male , Humans , Adult , Creatine/pharmacology , Dietary Supplements , Carbohydrates , Double-Blind Method
11.
J Int Soc Sports Nutr ; 20(1): 2263409, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37800468

ABSTRACT

Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of literature surrounding the effects of essential amino acid (EAA) supplementation on skeletal muscle maintenance and performance. This position stand is intended to provide a scientific foundation to athletes, dietitians, trainers, and other practitioners as to the benefits of supplemental EAA in both healthy and resistant (aging/clinical) populations. EAAs are crucial components of protein intake in humans, as the body cannot synthesize them. The daily recommended intake (DRI) for protein was established to prevent deficiencies due to inadequate EAA consumption. The following conclusions represent the official position of the Society: 1. Initial studies on EAAs' effects on skeletal muscle highlight their primary role in stimulating muscle protein synthesis (MPS) and turnover. Protein turnover is critical for replacing degraded or damaged muscle proteins, laying the metabolic foundation for enhanced functional performance. Consequently, research has shifted to examine the effects of EAA supplementation - with and without the benefits of exercise - on skeletal muscle maintenance and performance. 2. Supplementation with free-form EAAs leads to a quick rise in peripheral EAA concentrations, which in turn stimulates MPS. 3. The safe upper limit of EAA intake (amount), without inborn metabolic disease, can easily accommodate additional supplementation. 4. At rest, stimulation of MPS occurs at relatively small dosages (1.5-3.0 g) and seems to plateau at around 15-18 g. 5. The MPS stimulation by EAAs does not require non-essential amino acids. 6. Free-form EAA ingestion stimulates MPS more than an equivalent amount of intact protein. 7. Repeated EAA-induced MPS stimulation throughout the day does not diminish the anabolic effect of meal intake. 8. Although direct comparisons of various formulas have yet to be investigated, aging requires a greater proportion of leucine to overcome the reduced muscle sensitivity known as "anabolic resistance." 9. Without exercise, EAA supplementation can enhance functional outcomes in anabolic-resistant populations. 10. EAA requirements rise in the face of caloric deficits. During caloric deficit, it's essential to meet whole-body EAA requirements to preserve anabolic sensitivity in skeletal muscle.


Subject(s)
Amino Acids , Muscle, Skeletal , Humans , Leucine , Amino Acids/pharmacology , Muscle Proteins/metabolism , Dietary Supplements
12.
Front Nutr ; 10: 1219313, 2023.
Article in English | MEDLINE | ID: mdl-37720373

ABSTRACT

Objective: To examine the efficacy of supplementing with a multi-strain probiotic (MSP) on changes associated with mood, anxiety, and neurotransmitter levels. Method: In a randomized, double-blind, placebo-controlled fashion, 70 healthy men and women (31.0 ± 9.5 years, 173.0 ± 10.4 cm, 73.9 ± 13.8 kg, 24.6 ± 3.5 kg/m2) supplemented with a single capsule of MSP (a total daily dose of 4 × 109 colony forming units [CFU] comprised of a 1 × 109 CFU dose from each of the following strains: Limosilactobacillus fermentum LF16, Lacticaseibacillus rhamnosus LR06, Lactiplantibacillus plantarum LP01, and Bifidobacterium longum 04, Probiotical S.p.A., Novara, Italy) or a maltodextrin placebo (PLA). After 0, 2, 4, and 6 weeks of supplementation and 3 weeks after ceasing supplementation, study participants completed the Beck Depression Inventory (BDI-II), State-Trait Anxiety Inventory (STAI), and Leiden Index of Depression Sensitivity (LEIDS-R) questionnaires and had plasma concentrations of cortisol, dopamine, serotonin, and C-reactive protein determined. Results: BDI, STAI, and total LEIDS-R scores were reduced from baseline (p < 0.05) with MSP supplementation after 4 and 6 weeks of supplementation and 3 weeks after supplementation while no changes (p > 0.05) were reported in PLA. When compared to PLA, MSP scores for state anxiety, trait anxiety, and LEIDS-R (hopeless, aggression, rumination, and total score) were significantly lower (p < 0.05) after supplementation. Plasma serotonin concentrations in MSP were increased from baseline after 6 weeks of supplementation and 3 weeks after ceasing supplementation. No changes (p > 0.05) in plasma dopamine, C-reactive protein, or cortisol concentrations were observed between groups. Conclusion: MSP supplementation resulted in widespread improvements in several questionnaires evaluating mood, anxiety, and depression in young, healthy men and women. MSP supplementation increased serotonin increased after 6 weeks of MSP supplementation with no change in dopamine, C-reactive protein, or cortisol. Clinical trial registration: https://classic.clinicaltrials.gov/ct2/show/NCT05343533, NCT05343533.

13.
J Funct Morphol Kinesiol ; 8(3)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37606404

ABSTRACT

The purpose of this study was to examine sex differences in resting metabolic rate (RMR) and associations between measured RMR and body composition parameters in athletes. One-hundred and ninety collegiate men (n = 98; age: 20.1 ± 1.6 yr.; body mass: 92.7 ± 17.5 kg; height: 181.6 ± 6.2 cm, body mass index: 28.0 ± 4.7 kg/m2) and women (n = 92; age: 19.4 ± 1.1 yr.; body mass: 65.2 ± 11.0 kg; height: 168.0 ± 6.6 cm, body mass index: 23.0 ± 3.6 kg/m2) athletes volunteered to participate in this study. Athletes completed a body composition assessment using air displacement plethysmography and RMR using indirect calorimetry. Assessments were completed in a fasted state and after refraining from intense physical activity > 24 h prior to testing. Data were collected during the 2016-2019 seasons. Men had a higher RMR compared to women (2595 ± 433 vs. 1709 ± 308 kcals; p < 0.001); however, when adjusted for body mass (p = 0.064) and fat-free mass (p = 0.084), the observed differences were not significant. Height, body mass, body mass index, fat-free mass, and fat mass were positively associated with RMR in both men and women athletes (r = 0.4-0.8; p < 0.001). Body mass (men: ß = 0.784; women: ß = 0.832)) was the strongest predictor of RMR. Men athletes have a higher absolute RMR compared to their women counterparts, which is influenced by greater body mass and fat-free mass. Body mass is the strongest predictor of RMR in both men and women athletes.

14.
Front Sports Act Living ; 5: 1257740, 2023.
Article in English | MEDLINE | ID: mdl-37547822
16.
J Int Soc Sports Nutr ; 20(1): 2237952, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37498180

ABSTRACT

Based on review and critical analysis of the literature regarding the contents and physiological effects of coffee related to physical and cognitive performance conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society:(1) Coffee is a complex matrix of hundreds of compounds. These are consumed with broad variability based upon serving size, bean type (e.g. common Arabica vs. Robusta), and brew method (water temperature, roasting method, grind size, time, and equipment).(2) Coffee's constituents, including but not limited to caffeine, have neuromuscular, antioxidant, endocrine, cognitive, and metabolic (e.g. glucose disposal and vasodilation) effects that impact exercise performance and recovery.(3) Coffee's physiologic effects are influenced by dose, timing, habituation to a small degree (to coffee or caffeine), nutrigenetics, and potentially by gut microbiota differences, sex, and training status.(4) Coffee and/or its components improve performance across a temporal range of activities from reaction time, through brief power exercises, and into the aerobic time frame in most but not all studies. These broad and varied effects have been demonstrated in men (mostly) and in women, with effects that can differ from caffeine ingestion, per se. More research is needed.(5) Optimal dosing and timing are approximately two to four cups (approximately 473-946 ml or 16-32 oz.) of typical hot-brewed or reconstituted instant coffee (depending on individual sensitivity and body size), providing a caffeine equivalent of 3-6 mg/kg (among other components such as chlorogenic acids at approximately 100-400 mg per cup) 60 min prior to exercise.(6) Coffee has a history of controversy regarding side effects but is generally considered safe and beneficial for healthy, exercising individuals in the dose range above.(7) Coffee can serve as a vehicle for other dietary supplements, and it can interact with nutrients in other foods.(8) A dearth of literature exists examining coffee-specific ergogenic and recovery effects, as well as variability in the operational definition of "coffee," making conclusions more challenging than when examining caffeine in its many other forms of delivery (capsules, energy drinks, "pre-workout" powders, gum, etc.).


Subject(s)
Athletic Performance , Coffee , Male , Female , Humans , Caffeine/pharmacology , Athletic Performance/physiology , Chlorogenic Acid/analysis , Exercise
17.
J Int Soc Sports Nutr ; 20(1): 2204066, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37221858

ABSTRACT

Based on a comprehensive review and critical analysis of the literature regarding the nutritional concerns of female athletes, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Female athletes have unique and unpredictable hormone profiles, which influence their physiology and nutritional needs across their lifespan. To understand how perturbations in these hormones affect the individual, we recommend that female athletes of reproductive age should track their hormonal status (natural, hormone driven) against training and recovery to determine their individual patterns and needs and peri and post-menopausal athletes should track against training and recovery metrics to determine the individuals' unique patterns. 2. The primary nutritional consideration for all athletes, and in particular, female athletes, should be achieving adequate energy intake to meet their energy requirements and to achieve an optimal energy availability (EA); with a focus on the timing of meals in relation to exercise to improve training adaptations, performance, and athlete health. 3. Significant sex differences and sex hormone influences on carbohydrate and lipid metabolism are apparent, therefore we recommend first ensuring athletes meet their carbohydrate needs across all phases of the menstrual cycle. Secondly, tailoring carbohydrate intake to hormonal status with an emphasis on greater carbohydrate intake and availability during the active pill weeks of oral contraceptive users and during the luteal phase of the menstrual cycle where there is a greater effect of sex hormone suppression on gluconogenesis output during exercise. 4. Based upon the limited research available, we recommend that pre-menopausal, eumenorrheic, and oral contraceptives using female athletes should aim to consume a source of high-quality protein as close to beginning and/or after completion of exercise as possible to reduce exercise-induced amino acid oxidative losses and initiate muscle protein remodeling and repair at a dose of 0.32-0.38 g·kg-1. For eumenorrheic women, ingestion during the luteal phase should aim for the upper end of the range due to the catabolic actions of progesterone and greater need for amino acids. 5. Close to the beginning and/or after completion of exercise, peri- and post-menopausal athletes should aim for a bolus of high EAA-containing (~10 g) intact protein sources or supplements to overcome anabolic resistance. 6. Daily protein intake should fall within the mid- to upper ranges of current sport nutrition guidelines (1.4-2.2 g·kg-1·day-1) for women at all stages of menstrual function (pre-, peri-, post-menopausal, and contraceptive users) with protein doses evenly distributed, every 3-4 h, across the day. Eumenorrheic athletes in the luteal phase and peri/post-menopausal athletes, regardless of sport, should aim for the upper end of the range. 7. Female sex hormones affect fluid dynamics and electrolyte handling. A greater predisposition to hyponatremia occurs in times of elevated progesterone, and in menopausal women, who are slower to excrete water. Additionally, females have less absolute and relative fluid available to lose via sweating than males, making the physiological consequences of fluid loss more severe, particularly in the luteal phase. 8. Evidence for sex-specific supplementation is lacking due to the paucity of female-specific research and any differential effects in females. Caffeine, iron, and creatine have the most evidence for use in females. Both iron and creatine are highly efficacious for female athletes. Creatine supplementation of 3 to 5 g per day is recommended for the mechanistic support of creatine supplementation with regard to muscle protein kinetics, growth factors, satellite cells, myogenic transcription factors, glycogen and calcium regulation, oxidative stress, and inflammation. Post-menopausal females benefit from bone health, mental health, and skeletal muscle size and function when consuming higher doses of creatine (0.3 g·kg-1·d-1). 9. To foster and promote high-quality research investigations involving female athletes, researchers are first encouraged to stop excluding females unless the primary endpoints are directly influenced by sex-specific mechanisms. In all investigative scenarios, researchers across the globe are encouraged to inquire and report upon more detailed information surrounding the athlete's hormonal status, including menstrual status (days since menses, length of period, duration of cycle, etc.) and/or hormonal contraceptive details and/or menopausal status.


Subject(s)
Creatine , Sports , Female , Humans , Male , Progesterone , Athletes , Amino Acids
19.
J Int Soc Sports Nutr ; 20(1): 2171314, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36862943

ABSTRACT

Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature regarding the effects of energy drink (ED) or energy shot (ES) consumption on acute exercise performance, metabolism, and cognition, along with synergistic exercise-related performance outcomes and training adaptations. The following 13 points constitute the consensus of the Society and have been approved by the Research Committee of the Society: Energy drinks (ED) commonly contain caffeine, taurine, ginseng, guarana, carnitine, choline, B vitamins (vitamins B1, B2, B3, B5, B6, B9, and B12), vitamin C, vitamin A (beta carotene), vitamin D, electrolytes (sodium, potassium, magnesium, and calcium), sugars (nutritive and non-nutritive sweeteners), tyrosine, and L-theanine, with prevalence for each ingredient ranging from 1.3 to 100%. Energy drinks can enhance acute aerobic exercise performance, largely influenced by the amount of caffeine (> 200 mg or >3 mg∙kg bodyweight [BW-1]) in the beverage. Although ED and ES contain several nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES based on scientific evidence appear to be caffeine and/or the carbohydrate provision. The ergogenic value of caffeine on mental and physical performance has been well-established, but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. Consuming ED and ES 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance with doses >3 mg∙kg BW-1. Consuming ED and ES containing at least 3 mg∙kg BW-1 caffeine is most likely to benefit maximal lower-body power production. Consuming ED and ES can improve endurance, repeat sprint performance, and sport-specific tasks in the context of team sports. Many ED and ES contain numerous ingredients that either have not been studied or evaluated in combination with other nutrients contained in the ED or ES. For this reason, these products need to be studied to demonstrate efficacy of single- and multi-nutrient formulations for physical and cognitive performance as well as for safety. Limited evidence is available to suggest that consumption of low-calorie ED and ES during training and/or weight loss trials may provide ergogenic benefit and/or promote additional weight control, potentially through enhanced training capacity. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. Individuals should consider the impact of regular coingestion of high glycemic index carbohydrates from ED and ES on metabolic health, blood glucose, and insulin levels. Adolescents (aged 12 through 18) should exercise caution and seek parental guidance when considering the consumption of ED and ES, particularly in excessive amounts (e.g. > 400 mg), as limited evidence is available regarding the safety of these products among this population. Additionally, ED and ES are not recommended for children (aged 2-12), those who are pregnant, trying to become pregnant, or breastfeeding and those who are sensitive to caffeine. Diabetics and individuals with preexisting cardiovascular, metabolic, hepatorenal, and/or neurologic disease who are taking medications that may be affected by high glycemic load foods, caffeine, and/or other stimulants should exercise caution and consult with their physician prior to consuming ED. The decision to consume ED or ES should be based upon the beverage's content of carbohydrate, caffeine, and other nutrients and a thorough understanding of the potential side effects. Indiscriminate use of ED or ES, especially if multiple servings per day are consumed or when consumed with other caffeinated beverages and/or foods, may lead to adverse effects. The purpose of this review is to provide an update to the position stand of the International Society of Sports Nutrition (ISSN) integrating current literature on ED and ES in exercise, sport, and medicine. The effects of consuming these beverages on acute exercise performance, metabolism, markers of clinical health, and cognition are addressed, as well as more chronic effects when evaluating ED/ES use with exercise-related training adaptions.


Subject(s)
Energy Drinks , Adolescent , Child , Female , Pregnancy , Humans , Caffeine , Vitamins , Nutrients , Ascorbic Acid
20.
J Diet Suppl ; 20(6): 832-849, 2023.
Article in English | MEDLINE | ID: mdl-36184601

ABSTRACT

L-Beta-amino isobutyric acid (L-BAIBA) is a myokine produced in skeletal muscle during exercise and has been shown to impact carbohydrate and fat metabolism in both animals and humans. This study was designed to determine the rate and extent to which L-BAIBA appeared in human plasma after oral ingestion. In a randomized, double-blind, placebo-controlled, crossover fashion, six males and 6 females (N = 12; 24 ± 5 yrs; 173.6 ± 12.0 cm; 72.3 ± 11.3 kg; 21.0 ± 7.0 body fat %) completed a single-dose supplementation protocol of placebo (PLA), L-BAIBA at 250 mg (B250), 500 mg (B500), 1,500mg (B1500), and 1,500mg of valine (V1500). Participants fasted overnight (8-10 h) and consumed their dose with 8-12 fluid ounces of cold water. Venous blood samples were collected 0, 30, 60, 90, 120, 180, 240 and 300 min after ingestion and analyzed for L-BAIBA. Complete blood counts and comprehensive metabolic panels were analyzed 0 and 300 min after ingestion. Peak concentration (CMax) and area under the curve (AUC) were calculated for all variables. Baseline L-BAIBA levels were not different between conditions (p = 0.46). The observed AUC for B1500 (30,513 ± 9190 µM•300 min) was significantly higher than B500 (11,087 ± 3378 µM•300 min, p < 0.001), B250 (7081 ± 2535 µM•300 min, p < 0.001), V1500 (2837 ± 2107 µM•300 min, p < 0.001), and PLA (2836 ± 2061 µM•300 min, p < 0.001). Similarly, L-BAIBA CMax for B1500 (278.1 ± 52.1 µM) was significantly higher than all other supplement conditions: B500 (95.4 ± 33.5 µM, p < 0.001), B250 (63.3 ± 61.1 µM, p < 0.001), V1500 (10.1 ± 7.2 µM, p < 0.001), PLA (11.0 ± 7.1 µM, p = 0.001). AUC and CMax for B500 was significantly higher than B250 (p < 0.001), V1500 (p < 0.001), and PLA (p < 0.001). BAIBA AUC for B250 was significantly higher than V1500 (p < 0.001) and PLA (p < 0.001). No clinically significant changes in blood-based markers of health or adverse events were observed across the study protocol. L-BAIBA doses of 250 mg, 500 mg, and 1500 mg produced significantly greater concentrations of plasma L-BAIBA across a five-hour measurement window when compared to a 1500 mg dose of valine or a placebo. Follow-up efficacy studies on resting and exercise metabolism should be completed to assess the impact of L-BAIBA supplementation in normal weight and overweight individuals. Retrospectively registered on April 22, 2022 at ClinicalTrials.gov as NCT05328271.


Subject(s)
Aminoisobutyric Acids , Dietary Supplements , Female , Humans , Male , Polyesters , Valine , Young Adult , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...