Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cell Biol ; 26(4): 604-612, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38589534

ABSTRACT

The localization of transcriptional activity in specialized transcription bodies is a hallmark of gene expression in eukaryotic cells. It remains unclear, however, if and how transcription bodies affect gene expression. Here we disrupted the formation of two prominent endogenous transcription bodies that mark the onset of zygotic transcription in zebrafish embryos and analysed the effect on gene expression using enriched SLAM-seq and live-cell imaging. We find that the disruption of transcription bodies results in the misregulation of hundreds of genes. Here we focus on genes that are upregulated. These genes have accessible chromatin and are poised to be transcribed in the presence of the two transcription bodies, but they do not go into elongation. Live-cell imaging shows that disruption of the two large transcription bodies enables these poised genes to be transcribed in ectopic transcription bodies, suggesting that the large transcription bodies sequester a pause release factor. Supporting this hypothesis, we find that CDK9-the kinase that releases paused polymerase II-is highly enriched in the two large transcription bodies. Overexpression of CDK9 in wild-type embryos results in the formation of ectopic transcription bodies and thus phenocopies the removal of the two large transcription bodies. Taken together, our results show that transcription bodies regulate transcription by sequestering machinery, thereby preventing genes elsewhere in the nucleus from being transcribed.


Subject(s)
Positive Transcriptional Elongation Factor B , RNA Polymerase II , Animals , Chromatin/genetics , Gene Expression , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , RNA Polymerase II/genetics , Transcription, Genetic , Zebrafish/genetics , Zebrafish/metabolism
2.
Mol Cell ; 84(4): 791-801.e6, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38262410

ABSTRACT

In S phase, duplicating and assembling the whole genome into chromatin requires upregulation of replicative histone gene expression. Here, we explored how histone chaperones control histone production in human cells to ensure a proper link with chromatin assembly. Depletion of the ASF1 chaperone specifically decreases the pool of replicative histones both at the protein and RNA levels. The decrease in their overall expression, revealed by total RNA sequencing (RNA-seq), contrasted with the increase in nascent/newly synthesized RNAs observed by 4sU-labeled RNA-seq. Further inspection of replicative histone RNAs showed a 3' end processing defect with an increase of pre-mRNAs/unprocessed transcripts likely targeted to degradation. Collectively, these data argue for a production defect of replicative histone RNAs in ASF1-depleted cells. We discuss how this regulation of replicative histone RNA metabolism by ASF1 as a "chaperone checkpoint" fine-tunes the histone dosage to avoid unbalanced situations deleterious for cell survival.


Subject(s)
Histones , Saccharomyces cerevisiae Proteins , Humans , Histones/genetics , Histones/metabolism , Histone Chaperones/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Replication , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , RNA/genetics , Saccharomyces cerevisiae Proteins/metabolism
3.
Genes Dev ; 32(3-4): 224-229, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29483155

ABSTRACT

DNA replication origins in hyperacetylated euchromatin fire preferentially during early S phase. However, how acetylation controls DNA replication timing is unknown. TICRR/TRESLIN is an essential protein required for the initiation of DNA replication. Here, we report that TICRR physically interacts with the acetyl-histone binding bromodomain (BRD) and extraterminal (BET) proteins BRD2 and BRD4. Abrogation of this interaction impairs TICRR binding to acetylated chromatin and disrupts normal S-phase progression. Our data reveal a novel function for BET proteins and establish the TICRR-BET interaction as a potential mechanism for epigenetic control of DNA replication.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Replication , Epigenesis, Genetic , Cell Cycle Proteins/chemistry , Cell Line , Chromatin/metabolism , Humans , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , S Phase , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...