Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Eur Respir J ; 60(6)2022 12.
Article in English | MEDLINE | ID: mdl-35777766

ABSTRACT

BACKGROUND: COPD is the third leading cause of death worldwide. Cigarette smoke (CS)-induced chronic inflammation inducing airway remodelling, emphysema and impaired lung function is the primary cause. Effective therapies are urgently needed. Human chymase (hCMA)1 and its orthologue mCMA1/mouse mast cell protease (mMCP)5 are exocytosed from activated mast cells and have adverse roles in numerous disorders, but their role in COPD is unknown. METHODS: We evaluated hCMA1 levels in lung tissues of COPD patients. We used mmcp5-deficient (-/-) mice to evaluate this protease's role and potential for therapeutic targeting in CS-induced experimental COPD. In addition, we used ex vivo/in vitro studies to define mechanisms. RESULTS: The levels of hCMA1 mRNA and CMA1+ mast cells were increased in lung tissues from severe compared to early/mild COPD patients, non-COPD smokers and healthy controls. Degranulated mast cell numbers and mMCP5 protein were increased in lung tissues of wild-type mice with experimental COPD. mmcp5 -/- mice were protected against CS-induced inflammation and macrophage accumulation, airway remodelling, emphysema and impaired lung function in experimental COPD. CS extract challenge of co-cultures of mast cells from wild-type, but not mmcp5 -/- mice with wild-type lung macrophages increased in tumour necrosis factor (TNF)-α release. It also caused the release of CMA1 from human mast cells, and recombinant hCMA-1 induced TNF-α release from human macrophages. Treatment with CMA1 inhibitor potently suppressed these hallmark features of experimental COPD. CONCLUSION: CMA1/mMCP5 promotes the pathogenesis of COPD, in part, by inducing TNF-α expression and release from lung macrophages. Inhibiting hCMA1 may be a novel treatment for COPD.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Animals , Mice , Chymases/metabolism , Mast Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Airway Remodeling , Pulmonary Emphysema/etiology , Lung , Emphysema/complications , Inflammation/metabolism , Mice, Inbred C57BL
2.
J Allergy Clin Immunol ; 149(4): 1270-1280, 2022 04.
Article in English | MEDLINE | ID: mdl-34678326

ABSTRACT

BACKGROUND: Obesity is a risk factor for asthma, and obese asthmatic individuals are more likely to have severe, steroid-insensitive disease. How obesity affects the pathogenesis and severity of asthma is poorly understood. Roles for increased inflammasome-mediated neutrophilic responses, type 2 immunity, and eosinophilic inflammation have been described. OBJECTIVE: We investigated how obesity affects the pathogenesis and severity of asthma and identified effective therapies for obesity-associated disease. METHODS: We assessed associations between body mass index and inflammasome responses with type 2 (T2) immune responses in the sputum of 25 subjects with asthma. Functional roles for NLR family, pyrin domain-containing (NLRP) 3 inflammasome and T2 cytokine responses in driving key features of disease were examined in experimental high-fat diet-induced obesity and asthma. RESULTS: Body mass index and inflammasome responses positively correlated with increased IL-5 and IL-13 expression as well as C-C chemokine receptor type 3 expression in the sputum of subjects with asthma. High-fat diet-induced obesity resulted in steroid-insensitive airway hyperresponsiveness in both the presence and absence of experimental asthma. High-fat diet-induced obesity was also associated with increased NLRP3 inflammasome responses and eosinophilic inflammation in airway tissue, but not lumen, in experimental asthma. Inhibition of NLRP3 inflammasome responses reduced steroid-insensitive airway hyperresponsiveness but had no effect on IL-5 or IL-13 responses in experimental asthma. Depletion of IL-5 and IL-13 reduced obesity-induced NLRP3 inflammasome responses and steroid-insensitive airway hyperresponsiveness in experimental asthma. CONCLUSION: We found a relationship between T2 cytokine and NLRP3 inflammasome responses in obesity-associated asthma, highlighting the potential utility of T2 cytokine-targeted biologics and inflammasome inhibitors.


Subject(s)
Asthma , Inflammasomes , Cytokines , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Interleukin-13 , Interleukin-1beta , Interleukin-5 , NLR Family, Pyrin Domain-Containing 3 Protein , Obesity/complications
4.
Allergy ; 77(4): 1204-1215, 2022 04.
Article in English | MEDLINE | ID: mdl-34510493

ABSTRACT

BACKGROUND: Neutrophilic asthma (NA) is a clinically important asthma phenotype, the cellular and molecular basis of which is not completely understood. Airway macrophages are long-lived immune cells that exert important homeostatic and inflammatory functions which are dysregulated in asthma. Unique transcriptomic programmes reflect varied macrophage phenotypes in vitro. We aimed to determine whether airway macrophages are transcriptomically altered in NA. METHODS: We performed RNASeq analysis on flow cytometry-isolated sputum macrophages comparing NA (n = 7) and non-neutrophilic asthma (NNA, n = 13). qPCR validation of RNASeq results was performed (NA n = 13, NNA n = 23). Pathway analysis (PANTHER, STRING) of differentially expressed genes (DEGs) was performed. Gene set variation analysis (GSVA) was used to test for enrichment of NA macrophage transcriptomic signatures in whole sputum microarray (cohort 1 - controls n = 16, NA n = 29, NNA n = 37; cohort 2 U-BIOPRED - controls n = 16, NA n = 47, NNA n = 57). RESULTS: Flow cytometry-sorting significantly enriched sputum macrophages (99.4% post-sort, 44.9% pre-sort, p < .05). RNASeq analysis confirmed macrophage purity and identified DEGs in NA macrophages. Selected DEGs (SLAMF7, DYSF, GPR183, CSF3, PI3, CCR7, all p < .05 NA vs. NNA) were confirmed by qPCR. Pathway analysis of NA macrophage DEGs was consistent with responses to bacteria, contribution to neutrophil recruitment and increased expression of phagocytosis and efferocytosis factors. GSVA demonstrated neutrophilic macrophage gene signatures were significantly enriched in whole sputum microarray in NA vs. NNA and controls in both cohorts. CONCLUSIONS: We demonstrate a pathophysiologically relevant sputum macrophage transcriptomic programme in NA. The finding that there is transcriptional activation of inflammatory programmes in cell types other than neutrophils supports the concept of NA as a specific endotype.


Subject(s)
Asthma , Transcriptome , Asthma/diagnosis , Asthma/genetics , Humans , Macrophages , Neutrophils , Sputum
5.
Eur Respir J ; 59(6)2022 06.
Article in English | MEDLINE | ID: mdl-34824054

ABSTRACT

INTRODUCTION: Asthma is a heterogeneous disease with poorly defined phenotypes. Patients with severe asthma often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication. METHODS: Baseline urine was collected prospectively from healthy participants (n=100), patients with mild-to-moderate asthma (n=87) and patients with severe asthma (n=418) in the cross-sectional U-BIOPRED cohort; 12-18-month longitudinal samples were collected from patients with severe asthma (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods. RESULTS: A total of 90 metabolites were identified, with 40 significantly altered (p<0.05, false discovery rate <0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and patients with mild-to-moderate asthma differed significantly from those in patients with severe asthma (p=2.6×10-20), OCS-treated asthmatic patients differed significantly from non-treated patients (p=9.5×10-4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings. CONCLUSIONS: This is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the need to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.


Subject(s)
Anti-Asthmatic Agents , Asthma , Adrenal Cortex Hormones/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Asthma/genetics , Carnitine/therapeutic use , Cross-Sectional Studies , Humans , Severity of Illness Index , Solute Carrier Family 22 Member 5
7.
Eur Respir J ; 55(4)2020 04.
Article in English | MEDLINE | ID: mdl-32184317

ABSTRACT

Accumulating evidence highlights links between iron regulation and respiratory disease. Here, we assessed the relationship between iron levels and regulatory responses in clinical and experimental asthma.We show that cell-free iron levels are reduced in the bronchoalveolar lavage (BAL) supernatant of severe or mild-moderate asthma patients and correlate with lower forced expiratory volume in 1 s (FEV1). Conversely, iron-loaded cell numbers were increased in BAL in these patients and with lower FEV1/forced vital capacity (FVC) ratio. The airway tissue expression of the iron sequestration molecules divalent metal transporter 1 (DMT1) and transferrin receptor 1 (TFR1) are increased in asthma, with TFR1 expression correlating with reduced lung function and increased Type-2 (T2) inflammatory responses in the airways. Furthermore, pulmonary iron levels are increased in a house dust mite (HDM)-induced model of experimental asthma in association with augmented Tfr1 expression in airway tissue, similar to human disease. We show that macrophages are the predominant source of increased Tfr1 and Tfr1+ macrophages have increased Il13 expression. We also show that increased iron levels induce increased pro-inflammatory cytokine and/or extracellular matrix (ECM) responses in human airway smooth muscle (ASM) cells and fibroblasts ex vivo and induce key features of asthma in vivo, including airway hyper-responsiveness (AHR) and fibrosis, and T2 inflammatory responses.Together these complementary clinical and experimental data highlight the importance of altered pulmonary iron levels and regulation in asthma, and the need for a greater focus on the role and potential therapeutic targeting of iron in the pathogenesis and severity of disease.


Subject(s)
Asthma , Animals , Humans , Interleukin-13 , Iron , Lung , Pyroglyphidae
8.
Am J Respir Crit Care Med ; 202(3): 371-382, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32186892

ABSTRACT

Rationale: Vitamin D deficiency is common in patients with asthma and chronic obstructive pulmonary disease (COPD). Low 25-hydroxyvitamin D (25[OH]D) levels may represent a cause or a consequence of these conditions.Objectives: To determine whether vitamin D metabolism is altered in asthma or COPD.Methods: We conducted a longitudinal study in 186 adults to determine whether the 25(OH)D response to six oral doses of 3 mg vitamin D3, administered over 1 year, differed between those with asthma or COPD versus control subjects. Serum concentrations of vitamin D3, 25(OH)D3, and 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3) were determined presupplementation and postsupplementation in 93 adults with asthma, COPD, or neither condition, and metabolite-to-parent compound molar ratios were compared between groups to estimate hydroxylase activity. Additionally, we analyzed 14 datasets to compare expression of 1α,25(OH)2D3-inducible gene expression signatures in clinical samples taken from adults with asthma or COPD versus control subjects.Measurements and Main Results: The mean postsupplementation 25(OH)D increase in participants with asthma (20.9 nmol/L) and COPD (21.5 nmol/L) was lower than in control subjects (39.8 nmol/L; P = 0.001). Compared with control subjects, patients with asthma and COPD had lower molar ratios of 25(OH)D3-to-vitamin D3 and higher molar ratios of 1α,25(OH)2D3-to-25(OH)D3 both presupplementation and postsupplementation (P ≤ 0.005). Intergroup differences in 1α,25(OH)2D3-inducible gene expression signatures were modest and variable if statistically significant.Conclusions: Attenuation of the 25(OH)D response to vitamin D supplementation in asthma and COPD associated with reduced molar ratios of 25(OH)D3-to-vitamin D3 and increased molar ratios of 1α,25(OH)2D3-to-25(OH)D3 in serum, suggesting that vitamin D metabolism is dysregulated in these conditions.


Subject(s)
Asthma/metabolism , Calcifediol/metabolism , Calcitriol/metabolism , Cholecalciferol/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Vitamins/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Case-Control Studies , Cholecalciferol/pharmacokinetics , Cholestanetriol 26-Monooxygenase/genetics , Cytochrome P-450 CYP3A/genetics , Cytochrome P450 Family 2/genetics , Female , Humans , Male , Middle Aged , Oxidoreductases Acting on CH-CH Group Donors/genetics , Polymorphism, Single Nucleotide , Randomized Controlled Trials as Topic , Vitamin D-Binding Protein/genetics , Vitamin D3 24-Hydroxylase/genetics , Vitamins/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...