Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 26(7): 3223-3239, 2021 07.
Article in English | MEDLINE | ID: mdl-32651478

ABSTRACT

The neural molecular and biochemical response to stress is a distinct physiological process, and multiple lines of evidence indicate that the prefrontal cortex (PFC) is particularly sensitive to, and afflicted by, exposure to stress. Largely through this PFC dysfunction, stress has a characterized role in facilitating cognitive impairment, which is often dissociable from its effects on non-cognitive behaviors. The Rap1 small GTPase pathway has emerged as a commonly disrupted intracellular target in neuropsychiatric conditions, whether it be via alterations in Rap1 expression or through alterations in the expression of direct and specific upstream Rap1 activators and inhibitors. Here we demonstrate that escalating, intermittent stress increases Rap1 in mouse PFC synapses, results in cognitive impairments, and reduces the preponderance of mature dendritic spines in PFC neurons. Using viral-mediated gene transfer, we reveal that the hyper-induction of Rap1 in the PFC is sufficient to drive stress-relevant cognitive and synaptic phenotypes. These findings point to Rap1 as a critical mediator of stress-driven neuronal and behavioral pathology and highlight a previously unrecognized involvement for Rap1 in novelty-driven PFC engagement.


Subject(s)
Neuronal Plasticity , Prefrontal Cortex/physiopathology , Stress, Psychological/enzymology , rap1 GTP-Binding Proteins/physiology , Animals , Mice , Neurons , Synapses
2.
J Neuroendocrinol ; 25(10): 887-97, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23957788

ABSTRACT

Gonadotrophin-releasing hormone (GnRH) neurones of the hypothalamic-pituitary-gonadal (HPG) axis drive reproductive function and undergo age-related decreases in activation during the transition to reproductive senescence. Decreased GnRH secretion from the median eminence (ME) partially arises from attenuated glutamatergic signalling via the NMDA receptor (NMDAR) and may be a result of changing NMDAR stoichiometry to favour NR2b over NR2a subunit expression with ageing. We have previously shown that the systemic inhibition of NR2b-containing receptors with ifenprodil, an NR2b-specific antagonist, stimulates parameters of luteinising hormone (used as a proxy for GnRH) release in both young and middle-aged females. In the present study, we chronically administered ifenprodil, an NR2b-specific antagonist, at the site of GnRH terminals in the ME or at GnRH perikarya in the preoptic area, in reproductively senescent middle-aged female rats, aiming to determine whether NR2b antagonism could restore aspects of reproductive functionality. Effects on oestrous cyclicity, serum hormones, and protein expression of GnRH, NR2b and phosphorylated NR2b (Tyr-1472) in the ME were measured. Chronic ifenprodil treatment in the ME (but not the preoptic area) altered oestrous cyclicity by increasing the percentage of days spent in pro-oestrus. This was accompanied by increased GnRH fluorescence intensity in the external ME zone and a greater proportion of GnRH terminals that co-labelled with pNR2b with treatment. We also observed changes in the relationships between protein immunofluorescence, serum hormone levels and other aspects of reproductive physiology in acyclic females, as revealed by bionetwork analysis. Together, these data support the hypothesis that NMDAR-NR2b expression and phosphorylation state play a role in reproductive senescence and highlight the ME as a major player in reproductive ageing.


Subject(s)
Aging/physiology , Median Eminence/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Reproduction , Animals , Female , Microscopy, Confocal , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism
3.
Neuroscience ; 163(3): 877-89, 2009 Oct 20.
Article in English | MEDLINE | ID: mdl-19596056

ABSTRACT

Recent literature indicates that low-dose Methylene Blue (MB), an autoxidizable dye with powerful antioxidant and metabolic enhancing properties, might prevent neurotoxin-induced neural damage and associated functional deficits. This study evaluated whether local MB may counteract the anatomical and functional effects of the intrastriatal infusion of the neurotoxin rotenone (Rot) in the rat. To this end, stereological analyses of striatal lesion volumes were performed and changes in oxidative energy metabolism in the striatum and related motor regions were mapped using cytochrome oxidase histochemistry. The influence of MB on striatal levels of oxidative stress induced by Rot was determined, and behavioral tests were used to investigate the effect of unilateral MB coadministration on motor asymmetry. Rot induced large anatomical lesions resembling "metabolic strokes," whose size was greatly reduced in MB-treated rats. Moreover, MB prevented the decrease in cytochrome oxidase activity and the perilesional increase in oxidative stress associated with Rot infusion in the striatum. MB also prevented the indirect effects of the Rot-induced lesion on cytochrome oxidase activity in related motor regions, such as the striatal regions rostral and caudal to the lesion, the substantia nigra compacta and reticulata, and the pedunculopontine nucleus. At a network level, MB maintained a global strengthening of functional connectivity in basal ganglia-thalamocortical motor circuits, as opposed to the functional decoupling observed in Rot-alone subjects. Finally, MB partially prevented the behavioral sensorimotor asymmetries elicited by Rot. These results are consistent with protective effects of MB against neurotoxic damage in the brain parenchyma. This study provides the first demonstration of the anatomical, metabolic and behavioral neuroprotective effects of MB in the striatum in vivo, and supports the notion that MB could be a valuable intervention against neural damage associated with oxidative stress and energy hypometabolism.


Subject(s)
Antioxidants/pharmacology , Corpus Striatum/drug effects , Methylene Blue/pharmacology , Neuroprotective Agents/pharmacology , Animals , Antioxidants/therapeutic use , Behavior, Animal/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Electron Transport Complex I/metabolism , Electron Transport Complex IV/metabolism , Male , Methylene Blue/therapeutic use , Nerve Degeneration/chemically induced , Nerve Degeneration/drug therapy , Nerve Degeneration/pathology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Rotenone
SELECTION OF CITATIONS
SEARCH DETAIL
...