Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Eur J Surg Oncol ; 50(4): 108048, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471374

ABSTRACT

INTRODUCTION: Posthepatectomy liver failure (PHLF) remains the main reason for short-term mortality after liver surgery. APRI+ALBI, aspartate aminotransferase to platelet ratio (APRI) combined with albumin-bilirubin grade (ALBI), score and the liver function maximum capacity test (LiMAx) are both established preoperative (preop) liver function tests. The aim of this study was to compare both tests for their predictive potential for clinically significant PHLF grade B and C (B+C). MATERIALS AND METHODS: 352 patients were included from 4 European centers. Patients had available preop APRI+ALBI scores and LiMAx results. Predictive potential for PHLF, PHLF B+C and 90-day mortality was compared using receiver operating characteristic (ROC) curve analysis and calculation of the area under the curve (AUC). Published cutoffs of ≥ -2.46 for APRI+ALBI and of <315 for LiMAx were assessed using chi-squared test. RESULTS: APRI+ALBI showed superior predictive potential for PHLF B+C (N = 34; AUC = 0.766), PHLF grade C (N = 20; AUC = 0.782) and 90-day mortality (N = 15; AUC = 0.750). When comparing the established cutoffs of both tests, APRI+ALBI outperformed LiMAx in prediction of PHLF B+C (APRI+ALBI ≥2.46: Positive predictive value (PPV) = 19%, negative predictive value (NPV) = 97%; LiMAx <315: PPV = 3%, NPV = 90%) and 90-day mortality (APRI+ALBI ≥2.46: PPV = 12%, NPV = 99%; LiMAx <315: PPV = 0%, NPV = 94%) CONCLUSION: In our analysis, APRI+ALBI outperformed LiMAx measurement in the preop prediction of PHLF B+C and postoperative mortality, at a fraction of the costs, manual labor and invasiveness.


Subject(s)
Carcinoma, Hepatocellular , Liver Failure , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/surgery , Hepatectomy/methods , Prognosis , Serum Albumin , Risk Assessment , ROC Curve , Retrospective Studies
2.
J Thromb Haemost ; 22(3): 620-632, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38007060

ABSTRACT

BACKGROUND: Activation of coagulation and fibrin deposition in the regenerating liver appears to promote adequate liver regeneration in mice. In humans, perioperative hepatic fibrin deposition is reduced in patients who develop liver dysfunction after partial hepatectomy (PHx), but the mechanism underlying reduced fibrin deposition in these patients is unclear. METHODS AND RESULTS: Hepatic deposition of cross-linked (ie, stabilized) fibrin was evident in livers of mice after two-thirds PHx. Interestingly, hepatic fibrin cross-linking was dramatically reduced in mice after 90% PHx, an experimental setting of failed liver regeneration, despite similar activation of coagulation after two-thirds or 90% PHx. Likewise, intraoperative activation of coagulation was not reduced in patients who developed liver dysfunction after PHx. Preoperative fibrinogen plasma concentration was not connected to liver dysfunction after PHx in patients. Rather, preoperative and postoperative plasma activity of the transglutaminase coagulation factor (F)XIII, which cross-links fibrin, was lower in patients who developed liver dysfunction than in those who did not. PHx-induced hepatic fibrin cross-linking and hepatic platelet accumulation were significantly reduced in mice lacking the catalytic subunit of FXIII (FXIII-/- mice) after two-thirds PHx. This was coupled with a reduction in both hepatocyte proliferation and liver-to-body weight ratio as well as an apparent reduction in survival after two-thirds PHx in FXIII-/- mice. CONCLUSION: The results indicate that FXIII is a critical driver of liver regeneration after PHx and suggest that perioperative plasma FXIII activity may predict posthepatectomy liver dysfunction. The results may inform strategies to stabilize proregenerative fibrin during liver resection.


Subject(s)
Hepatectomy , Liver Diseases , Humans , Mice , Animals , Hepatectomy/adverse effects , Hepatectomy/methods , Liver Regeneration/physiology , Factor XIII , Liver/surgery , Fibrin
3.
Hepatol Commun ; 8(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38099865

ABSTRACT

BACKGROUND: Posthepatectomy liver failure (PHLF) represents a life-threatening complication with limited therapeutic options. Neutrophils play a critical and dynamic role during regeneratory processes, but their role in human liver regeneration is incompletely understood, especially as underlying liver disease, detectable in the majority of patients, critically affects hepatic regeneration. Here we explored intrahepatic neutrophil accumulation and neutrophil extracellular traps (NETs) in patients with PHLF and validated the functional relevance of NETs in a murine partial hepatectomy (PHx) model. METHODS: We investigated the influx of neutrophils, macrophages, eosinophils, and mast cells and the presence of their respective extracellular traps in liver biopsies of 35 patients undergoing hepatectomy (10 patients with PHLF) before and after the initiation of liver regeneration by fluorescence microscopy. In addition, NET formation and neutrophil activation were confirmed by plasma analysis of 99 patients (24 patients with PHLF) before and up to 5 days after surgery. Furthermore, we inhibited NETs via DNase I in a murine PHx model of mice with metabolically induced liver disease. RESULTS: We detected rapid intrahepatic neutrophil accumulation, elevated levels of myeloperoxidase release, and NET formation in regenerating human livers, with a significantly higher increase of infiltrating neutrophils and NETs in patients with PHLF. Circulating markers of neutrophil activation, including elastase, myeloperoxidase, and citrullinated histone H3, correlated with markers of liver injury. In a murine PHx model, we showed that the inhibition of NET accelerated hepatocyte proliferation and liver regeneration. CONCLUSIONS: Patients with PHLF showed accelerated intrahepatic neutrophil infiltration and NET formation, which were associated with liver damage. Further, we identified postsurgical myeloperoxidase levels as predictive markers for adverse outcomes and observed that blocking NETs in a murine PHx model accelerated tissue regeneration.


Subject(s)
Extracellular Traps , Focal Nodular Hyperplasia , Liver Failure , Humans , Animals , Mice , Neutrophils , Liver Failure/etiology , Peroxidase
4.
Ann Surg ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37860868

ABSTRACT

OBJECTIVE AND BACKGROUND: Clinically significant posthepatectomy liver failure (PHLF B+C) remains the main cause of mortality after major hepatic resection. This study aimed to establish an APRI+ALBI, aspartate aminotransferase to platelet ratio (APRI) combined with albumin-bilirubin grade (ALBI), based multivariable model (MVM) to predict PHLF and compare its performance to indocyanine green clearance (ICG-R15 or ICG-PDR) and albumin-ICG evaluation (ALICE). METHODS: 12,056 patients from the National Surgical Quality Improvement Program (NSQIP) database were used to generate a MVM to predict PHLF B+C. The model was determined using stepwise backwards elimination. Performance of the model was tested using receiver operating characteristic curve analysis and validated in an international cohort of 2,525 patients. In 620 patients, the APRI+ALBI MVM, trained in the NSQIP cohort, was compared with MVM's based on other liver function tests (ICG clearance, ALICE) by comparing the areas under the curve (AUC). RESULTS: A MVM including APRI+ALBI, age, sex, tumor type and extent of resection was found to predict PHLF B+C with an AUC of 0.77, with comparable performance in the validation cohort (AUC 0.74). In direct comparison with other MVM's based on more expensive and time-consuming liver function tests (ICG clearance, ALICE), the APRI+ALBI MVM demonstrated equal predictive potential for PHLF B+C. A smartphone application for calculation of the APRI+ALBI MVM was designed. CONCLUSION: Risk assessment via the APRI+ALBI MVM for PHLF B+C increases preoperative predictive accuracy and represents an universally available and cost-effective risk assessment prior to hepatectomy, facilitated by a freely available smartphone app.

5.
Expert Rev Gastroenterol Hepatol ; 17(10): 959-973, 2023.
Article in English | MEDLINE | ID: mdl-37811642

ABSTRACT

INTRODUCTION: Since the first discovery of microRNAs (miRs) extensive evidence reveals their indispensable role in different patho-physiological processes. They are recognized as critical regulators of hepatic regeneration, as they modulate multiple complex signaling pathways affecting liver regeneration. MiR-related translational suppression and degradation of target mRNAs and proteins are not limited to one specific gene, but act on multiple targets. AREAS COVERED: In this review, we are going to explore the role of miRs in the context of liver regeneration and discuss the regulatory effects attributed to specific miRs. Moreover, specific pathways crucial for liver regeneration will be discussed, with a particular emphasis on the involvement of miRs within the respective signaling cascades. EXPERT OPINION: The considerable amount of studies exploring miR functions in a variety of diseases paved the way for the development of miR-directed therapeutics. Clinical implementation has already shown promising results, but additional research is warranted to assure safe and efficient delivery. Nevertheless, given the broad functional properties of miRs and their critical involvement during hepatic regeneration, they represent an attractive treatment target to promote liver recovery after hepatic resection.


Subject(s)
Focal Nodular Hyperplasia , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Liver Regeneration/genetics , Signal Transduction
6.
Front Pediatr ; 11: 1135415, 2023.
Article in English | MEDLINE | ID: mdl-37228432

ABSTRACT

Introduction: The COVID-19 pandemic with its containment measures such as closures of schools and daycare facilities led to numerous restrictions in daily life, putting developmental opportunities and health-related quality of life in children at risk. However, studies show that not every family was impacted equally by the pandemic and that this exceptional health and societal situation reinforced pre-existing health inequalities among the vulnerable. Our study aimed at analyzing changes in behavior and health-related quality of life of children attending elementary schools and daycare facilities in Bavaria, Germany in spring 2021. We also sought to identify associated factors contributing to inequalities in quality of life. Methods: Data from a multi-center, open cohort study ("COVID Kids Bavaria") conducted in 101 childcare facilities and 69 elementary schools across all electoral districts of Bavaria were analyzed. Children attending these educational settings (aged 3-10 years) were eligible for participation in a survey on changes in behavior and health-related quality of life. The KINDLR questionnaire (based on children's self-report and parental report) was administered about one year after the onset of the pandemic (spring 2021). Descriptive and logistic regression analyses and comparisons to pre-pandemic KiGGS (German Health Interview and Examination Survey for Children and Adolescents) data were undertaken. Results: Among respondents, a high percentage of parents reported changes in their children's eating and sleeping behavior, sports and outdoor activities as well as altered screen time. Health-related quality of life in KINDLR analyses compared to pre-pandemic population averages were lower in all age groups (for 3-6-year-old KINDLR-total score: COVID Kids Bavaria MD 74.78 ± 10.57 vs KiGGS data 80.0 ± 8.1; 7-10 years-old KINDLR-total score: COVID Kids Bavaria MD 73.88 ± 12.03 vs KiGGS data 79.30 ± 9.0). No significant differences were detected with regard to associated factors, namely type of institution, sex of the child, migration background, household size and parental education. Conclusion: These findings suggest a relevant impact of the COVID-19 pandemic on children's behavior and health-related quality of life one year after the onset of the pandemic. Further analyses in large-scale longitudinal studies are needed to determine the effects of specific pandemic or crisis associated factors contributing to health inequalities.

7.
Front Pediatr ; 10: 888498, 2022.
Article in English | MEDLINE | ID: mdl-35874561

ABSTRACT

Introduction: Here we report our results of a multi-center, open cohort study ("COVID-Kids-Bavaria") investigating the distribution of acute SARS-CoV-2 infections among children and staff in 99 daycare facilities and 48 elementary schools in Bavaria, Germany. Materials and Methods: Overall, 2,568 children (1,337 school children, 1,231 preschool children) and 1,288 adults (466 teachers, 822 daycare staff) consented to participate in the study and were randomly tested in three consecutive phases (September/October 2020, November/December 2020, March 2021). In total, 7,062 throat swabs were analyzed for SARS-CoV-2 by commercial RT-PCR kits. Results: In phase I, only one daycare worker tested positive. In phase II, SARS-CoV-2 was detected in three daycare workers, two preschool children, and seven school children. In phase III, no sample tested positive. This corresponds to a positive test rate of 0.05% in phase I, 0.4% in phase II and 0% in phase III. Correlation of a positive PCR test result with the local-7-day incidence values showed a strong association of a 7-day-incidence of more than 100/100,000 as compared to <100/100,000 (OR = 10.3 [1.5-438], p < 0.005). After phase III, antibody testing was offered to 713 study participants in elementary schools. A seroprevalence rate of 7.7% (students) and 4.5% (teachers) was determined. Discussion: During the initial waves of the SARS-CoV-2 pandemic, the risk of a positive SARS-CoV-2 result correlated positively with the local 7-day incidence. Hence, the occurrence of SARS-CoV-2 infections were reflected in schools and daycare facilities. An increased risk of SARS-CoV-2 transmission in the setting of daycare and elementary schooling was unlikely.

8.
Article in German | MEDLINE | ID: mdl-34792612

ABSTRACT

Are children and adolescents relevant disease vectors when it comes to the transmission of SARS-CoV-2? Moreover, do they play a role as relevant disease vectors in a school or kindergarten setting? These questions could not be sufficiently answered at the beginning of the pandemic. Consequently, schools and childcare facilities were closed to stop the spread of SARS-CoV­2. Over the past few months, researchers have gained a more detailed understanding of the overall pandemic situation. The SARS-CoV­2 infection rate in children below 10 years of age in 2020 has been substantially lower than in adults. In addition, it showed that children had a milder course of disease.Although a majority of the analyses performed in schools and childcare facilities revealed that the virus is transmitted in these facilities, these transmissions did not, however, have a considerable influence on the overall rate of new infections. Despite these findings, German politicians continue to advocate for the closure of childcare facilities, including schools, to fight the pandemic, whereas many specialist societies such as the German Society for Pediatric Infectious Diseases (DGPI) have emphasized that such closures should be the measure of last resort in combating the pandemic. The same message is also conveyed by a German evidence-based S3 guideline established by an interdisciplinary expert group that had already put forward clear recommendations for high incidences in the general population at the beginning of February 2021, indicating that school closures were only required in exceptional cases.In this article, we would like to outline the situation based on the currently available data, try to predict the future, and discuss the circumstances necessary to realize normal classroom teaching without accepting the risk of an uncontrolled spread of SARS-CoV­2.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Child , Germany/epidemiology , Humans , Pandemics , Schools
9.
STAR Protoc ; 1(1): 100041, 2020 06 19.
Article in English | MEDLINE | ID: mdl-33111089

ABSTRACT

Organoids are three-dimensional (3D) constructs generated in stem cell cultures and are thought to mimic tissue and organ development in situ. However, until recently, they often exclusively recapitulated the development of the organ`s parenchyma without the major components of the organ stroma. Here, we describe a protocol to incorporate stromal components, first of all blood vessels, by co-culturing with induced pluripotent stem cell-derived mesodermal progenitor cells. For complete details on the use and execution of this protocol, please refer to Wörsdörfer et al. (2019).


Subject(s)
Cell Culture Techniques, Three Dimensional/methods , Induced Pluripotent Stem Cells/cytology , Mesoderm/cytology , Nerve Tissue , Organoids , Animals , Cells, Cultured , Coculture Techniques/methods , Humans , Mice , Nerve Tissue/blood supply , Nerve Tissue/cytology , Organoids/blood supply , Organoids/cytology
10.
Sci Rep ; 9(1): 15663, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666641

ABSTRACT

Organoids derived from human pluripotent stem cells are interesting models to study mechanisms of morphogenesis and promising platforms for disease modeling and drug screening. However, they mostly remain incomplete as they lack stroma, tissue resident immune cells and in particular vasculature, which create important niches during development and disease. We propose, that the directed incorporation of mesodermal progenitor cells (MPCs) into organoids will overcome the aforementioned limitations. In order to demonstrate the feasibility of the method, we generated complex human tumor as well as neural organoids. We show that the formed blood vessels display a hierarchic organization and mural cells are assembled into the vessel wall. Moreover, we demonstrate a typical blood vessel ultrastructure including endothelial cell-cell junctions, a basement membrane as well as luminal caveolae and microvesicles. We observe a high plasticity in the endothelial network, which expands, while the organoids grow and is responsive to anti-angiogenic compounds and pro-angiogenic conditions such as hypoxia. We show that vessels within tumor organoids connect to host vessels following transplantation. Remarkably, MPCs also deliver Iba1+ cells that infiltrate the neural tissue in a microglia-like manner.


Subject(s)
Blood Vessels/physiology , Induced Pluripotent Stem Cells/cytology , Mesoderm/cytology , Organoids/cytology , Cell Differentiation , Humans
11.
Soc Sci Res ; 55: 1-15, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26680284

ABSTRACT

The goal of this paper was to investigate the generalizability of prejudice across contexts by analyzing associations between different types of prejudice in a cross-national perspective and by investigating the relation between country-specific contextual factors and target-specific prejudices. Relying on the European Social Survey (2008), results indicated that prejudices were indeed positively associated, confirming the existence of a generalized prejudice component. Next to substantial cross-national differences in associational strength, also within country variance in target-specific associations was observed. This suggested that the motivations for prejudice largely vary according to the intergroup context. Two aspects of the intergroup context - economic conditions and cultural values - showed to be related to generalized and target-specific components of prejudice. Future research on prejudice and context should take an integrative approach that considers both the idea of generalized and specific prejudice simultaneously.


Subject(s)
Emigrants and Immigrants , Ethnicity , Motivation , Prejudice , White People , Adult , Aged , Culture , Europe , Female , Humans , Interpersonal Relations , Male , Middle Aged , Social Values , Socioeconomic Factors
12.
Shock ; 38(5): 459-65, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23042203

ABSTRACT

Heme and its breakdown products CO, Fe, and bilirubin are being recognized as signaling molecules or even therapeutic agents, but also exert adverse effects when released at high concentrations. Manipulating the pathway confers protection in rodent sepsis models via both control of free heme and formation of its first and higher-order products. Thus, regulatory elements present in human heme oxygenase 1 (HMOX1) and biliverdin reductases (BLVRA/B) genes might impact outcome. We tested whether a highly polymorphic (GT)n microsatellite and single-nucleotide polymorphisms in HMOX1 and BLVRA/B genes are associated with outcome of sepsis. Two cohorts (n = 430 and 398 patients) with severe sepsis were screened for single-nucleotide polymorphisms and/or the microsatellite by fragment length analysis and genotyping techniques. Heme oxygenase 1 plasma levels were determined in additional patients with severe sepsis (n = 92) by enzyme-linked immunosorbent assay. Based on mean Sepsis-related Organ Failure Assessment scores, patients homozygous for rs2071746 A allele or medium length (GT)n microsatellites of HMOX1 showed higher 28-day mortality (P = 0.047 and P = 0.033) in one cohort compared with other genotypes, whereas 90-day mortality rates showed no association. The T allele was less frequently observed in both cohorts than would be expected according to Hardy-Weinberg equilibrium. Heme oxygenase 1 plasma levels were elevated in septic patients, independent of the genotype. Single-nucleotide polymorphisms within BLVRA/B showed no association with outcome. Short (GT)n repeats that are in linkage disequilibrium with the T allele of rs2071746 in HMOX1 are associated with favorable outcome, whereas no association with gene variants of BLVRA/B, involved in the generation of higher-order metabolites, was noticed.


Subject(s)
Heme Oxygenase-1/genetics , Heme/genetics , Microsatellite Repeats/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , Polymorphism, Single Nucleotide , Sepsis/genetics , Aged , Aged, 80 and over , Cohort Studies , Female , Heme/metabolism , Heme Oxygenase-1/metabolism , Humans , Male , Middle Aged , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Sepsis/metabolism , Sepsis/mortality , Severity of Illness Index , Survival Rate
13.
Neurochem Int ; 50(7-8): 916-20, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17316900

ABSTRACT

Na+-dependent uptake of excitatory neurotransmitter glutamate in astrocytes increases cell energy demands primarily due to the elevated ATP consumption by glutamine synthetase and Na+, K+-ATPase. The major pool of GLAST/EAAT1, the only glutamate transporter subtype expressed by human fetal astrocytes in undifferentiated cultures, was restricted to the cytoplasmic compartment. Elevated glutamate concentrations (up to 50 microM) stimulated both glutamate uptake and Na+, K+-ATPase activity and concomitantly increased cell surface expression of GLAST and FXYD2/gamma subunit of Na+, K+-ATPase. Intracellular accumulation of glutamate or its metabolites per se was not responsible for these changes since metabolically inert transport substrate, D-aspartate, exerted the same effect. Nanomolar concentrations of TFB-TBOA, a novel nontransportable inhibitor of glutamate carriers, almost completely reversed the action of glutamate or D-aspartate. In the same conditions (i.e. block of glutamate transport) monensin, a potent Na+ ionophore, had no significant effect neither on the activation of Na+, K+-ATPase nor on the cell surface expression of gamma subunit or GLAST. In order to elucidate the roles of gamma subunit in the glutamate uptake-dependent trafficking events or the activation of the astroglial sodium pump, in some cultures gamma subunit/FXYD2 was effectively knocked down using siRNA silencing. Unlike the blocking effect of TFB-TBOA, the down-regulation of gamma subunit had no effect neither on the trafficking nor activity of GLAST. However, the loss of gamma subunit effectively abolished the glutamate uptake-dependent activation of Na+, K+-ATPase. Following withdrawal of siRNA from cultures, the expression levels of gamma subunit and the sensitivity of Na+, K+-ATPase to glutamate/aspartate uptake have been concurrently restored. Thus, the activity of GLAST directs FXYD2 protein/gamma subunit to the cell surface, that, in turn, leads to the activation of the astroglial sodium pump, presumably due to the modulatory effect of gamma subunit on the kinetic parameters of catalytic alpha subunit(s) of Na+, K+-ATPase.


Subject(s)
Astrocytes/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Abortion, Induced , Aspartic Acid/metabolism , Astrocytes/cytology , Astrocytes/enzymology , Biological Transport , Biotinylation , Cell Membrane/metabolism , Cells, Cultured , DNA Primers , Female , Fetus , Humans , Pregnancy , Pregnancy Trimester, Second , Protein Subunits/genetics , RNA Interference , RNA, Small Interfering/genetics , Rubidium/metabolism
14.
Neurochem Int ; 48(6-7): 611-5, 2006.
Article in English | MEDLINE | ID: mdl-16516348

ABSTRACT

Neutral amino acid transporter ASCT2, together with high-affinity glutamate transporters, belongs to the SLC1 gene family of Na(+)-dependent solute carriers and is one of the major transporters of glutamine in cultured astrocytes. Besides glutamine and other high-affinity substrates--alanine, serine, cysteine or threonine, ASCT2 can also translocate protonated glutamate. The present study elucidated substrate-dependent trafficking of ASCT2 in differentiated primary cultures of human fetal astrocytes. The differentiation induced by 8-bromo-cAMP caused dramatic up-regulation of two co-localized and functionally linked astroglial proteins--glutamate transporter GLAST, that is the only high-affinity router of glutamate into cultured astrocytes, and glutamine synthetase (GS), a cytosolic enzyme that converts at least a part of the arriving glutamate into glutamine. In order to distinguish individual intracellular effects of these two substrates on ASCT2, in some cultures glutamine synthetase was effectively knocked down using siRNA silencing technique. In control conditions, regardless of GS levels, almost the entire ASCT2 immunoreactivity was restricted to the cytosol. Both glutamine and alanine, though to different extents, induced partial redistribution of ASCT2 from the cytosolic compartment to the plasma membrane. However, in cultures with high GS expression, micromolar concentrations of glutamate exhibited more pronounced effect on ASCT2 trafficking than the preferred substrates of this carrier. In contrast, glutamate had no effect on ASCT2 distribution in cultures devoid of GS. D-Aspartate, a metabolically inert substrate effectively transported by GLAST, had no effect in any cell culture utilized. It seems that intracellular glutamine produced by GS from glutamate that, in turn, is supplied by GLAST, is a more potent inducer of ASCT2 trafficking to the cell surface than the ASCT2-mediated translocation of extracellular substrates. At lower pH values (6.2-6.7), the cell surface pool of ASCT2 was significantly larger than at physiological pH. In addition, high concentrations of glutamate, independently from GLAST or glutamate receptor activation, induced further arrival of ASCT2 to the plasma membrane. The pH-dependent functional activation of ASCT2 and the ASCT2-mediated glutamate uptake may play important roles during ischemic acidosis or synaptic activity-induced local acidification.


Subject(s)
Amino Acid Transport System ASC/biosynthesis , Astrocytes/metabolism , Excitatory Amino Acid Transporter 1/physiology , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Alanine/metabolism , Aspartic Acid/metabolism , Cell Differentiation , Cell Membrane/metabolism , Cells, Cultured , Cytosol/metabolism , Embryo, Mammalian/cytology , Excitatory Amino Acid Transporter 1/biosynthesis , Glutamate-Ammonia Ligase/biosynthesis , Glutamate-Ammonia Ligase/genetics , Glutamic Acid/metabolism , Glutamine/metabolism , Humans , Hydrogen-Ion Concentration , Minor Histocompatibility Antigens , Protein Transport , RNA, Small Interfering/genetics , Up-Regulation
15.
Neurochem Int ; 43(4-5): 363-70, 2003.
Article in English | MEDLINE | ID: mdl-12742080

ABSTRACT

Malfunctioning of high-affinity glutamate transporters is believed to contribute to the accumulation of toxic concentrations of glutamate and, thus, trigger the cellular mechanisms of neurodegeneration. Emerging data point to the presence of excitotoxic component in Alzheimer's disease (AD) and aberrant expression of glutamate transporters in this neurodegenerative malady. Neuronal soluble factors are essential for differential expression and fine tuning of the astroglial glutamate transporters, GLT-1/EAAT2 and GLAST/EAAT1. However, the nature of factors specifically affecting glutamate uptake in AD is largely unknown. The overproduction of neurotoxic beta-amyloid peptide (Abeta), a major constituent of amyloid plaques, and marked down-regulation of BDNF, a neuroprotective factor, are hallmarks of AD pathophysiology. None of these typically neuronal factors was capable of changing the pattern of glutamate transporter expression in undifferentiated rat astrocytes that predominantly expressed GLAST. In differentiated astrocytes, BDNF and, to a lesser extent, subtoxic concentrations of Abeta 1-42 (1-5 microM) induced the expression of GLT-1 and increased glutamate uptake, whereas the GLAST levels were unaltered by these factors. The BDNF-dependent up-regulation of GLT-1 in differentiated astrocytes was partially antagonized by the activation of metabotropic glutamate receptor 4 (mGluR4), but not by group I or II mGluRs. Activation of transcription factor NF-kappaB appeared to be a shared essential, but not a sufficient molecular event in the BDNF- or Abeta-dependent induction of GLT-1. The BDNF-dependent activation of NF-kappaB and up-regulation of GLT-1 was critically dependent on the upstream activation of p42/p44 MAP kinase signaling, whereas the inhibition of these MAP kinases dramatically increased the Abeta-dependent activation of NF-kappaB and production of GLT-1. The capacity to up-regulate astroglial glutamate uptake system, that apparently represents a novel element in the neuroprotective repertoire of BDNF, can, however, provide adverse effect under certain insults when glutamate transporters start operating in reverse direction. The Abeta-dependent up-regulation of GLT-1/EAAT2, more pronounced under the deficit of MAP kinase signaling, may attenuate synaptic efficacy and, thus contribute to the impairment of neuroplasticity in AD.


Subject(s)
Amyloid beta-Peptides/physiology , Brain-Derived Neurotrophic Factor/physiology , Excitatory Amino Acid Transporter 2/genetics , NF-kappa B/physiology , Signal Transduction , Up-Regulation/physiology , Animals , Blotting, Western , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...