Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Anim Sci ; 92(11): 5275-84, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25253804

ABSTRACT

Subcutaneous fat and marbling both increase in beef cattle during the feeding phase but are antagonistic in regard to their contribution to beef carcass value. The objective of this study was to determine whether cellular factors associated with marbling development change with growth stage throughout the feeding period and whether they are correlated to marbling relative to carcass composition. Twenty-four steers of known origin with the cytosine and thymine (CT) leptin genotype were allotted to 3 harvest groups. Six steers per harvest group were harvested at the following predetermined points: 35 d on feed (early feeding period, EF), average live weight of 464 kg (middle feeding period, MF), and 1.17-cm 12th-rib subcutaneous fat thickness (late feeding period, LF). Longissmus muscle samples were collected within 30 min postmortem and snap frozen for real-time PCR and Western blot analysis of lipoprotein lipase, adenosine monophosphate-activated protein kinase α (AMPKα), stearoyl-coenzyme A desaturase (SCD), PPARγ, C/EBP-ß, and myostatin. Carcass data were recorded, and LM samples were collected and aged 2, 7, 14, and 21 d postmortem for Warner-Bratzler shear force determination. Carcass composition was estimated by dissection of the 9-10-11 rib section and subsequent proximate analysis of the soft tissue. Intramuscular fat content of the LM increased linearly throughout the feeding period, giving additional support to marbling as an early developing tissue. Expression of AMPKα was found to be downregulated, whereas SCD expression was upregulated in the LF group relative to the first 2 harvest groups. Additionally, SCD and PPARγ were downregulated in the EF group relative to the latter 2 harvest groups. These changes in gene expression resulted in a linear increase in only PPARγ protein abundance, whereas myostatin tended to increase quadratically. A correlation was found between intramuscular fat and PPARγ abundance. This gives further evidence of the importance of adipocyte hyperplasia in increasing marbling. Targeting and increasing PPARγ expression may serve as a mechanism to increase marbling deposition. Last, LF steaks were more tender than MF or EF steaks, indicating improved tenderness with increased days on feed.


Subject(s)
Adipose Tissue/physiology , Body Composition/physiology , Cattle/growth & development , Meat/analysis , Animals , Body Weight/physiology , Cattle/physiology , Eating/physiology , Genotype , Male , Muscle, Skeletal/enzymology , Subcutaneous Fat/anatomy & histology
2.
J Anim Sci ; 91(11): 5518-24, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23989868

ABSTRACT

Tenderness is a key component of palatability, which influences consumers' perception of meat quality. There are a variety of factors that contribute to the tenderness of beef carcasses, including postmortem proteolysis. A more complete understanding of this biological mechanism regulating tenderness is needed to ensure consistently tender beef. Numerous reports indicate µ-calpain is primarily responsible for the degradation of proteins postmortem. Meanwhile, it has been shown that caspase-3 can cleave calpastatin, the inhibitor of µ-calpain. Therefore, the objective of this study was to determine if in vitro degradation of calpastatin by caspase-3 can enhance the postmortem breakdown of myofibrillar proteins by µ-calpain. Bovine semitendinosus muscles were excised from two carcasses 20 min postmortem. Muscle strips were dissected from the semitendinosus, restrained to maintain length, and placed in a neutral buffer containing protease inhibitors. Upon rigor completion, myofibrils were isolated from each strip, and sarcomere length was determined. Samples with similar sarcomere lengths were selected to minimize the effect of sarcomere length on proteolysis. Myofibrils were then incubated at 22°C with either µ-calpain, µ-calpain+calpastatin, µ-calpain+caspase-3+calpastatin, or caspase-3+calpastatin for 0.25, 1, 3, 24, 48, or 72 h at a pH of 6.8. Proteolysis of troponin T (TnT) and calpastatin was evaluated using SDS-PAGE and Western blotting techniques. Analysis of Western blots confirmed significant degradation of calpastatin by caspase-3 (P<0.05). Additionally, Western blots revealed intact calpastatin disappeared rapidly as a result of digestion by µ-calpain. Although caspase-3 did not significantly degrade TnT (P>0.05), all µ-calpain digestion treatments resulted in substantial TnT breakdown (P<0.05). Degradation of TnT did not differ between the µ-calpain+calpastatin and µ-calpain+caspase-3+calpastatin digestions (P>0.05). Results of this study indicate caspase-3 cleavage of calpastatin does not enhance in vitro degradation of TnT by µ-calpain.


Subject(s)
Calpain/metabolism , Caspase 3/metabolism , Cattle , Myofibrils/metabolism , Animals , Blotting, Western , Calcium-Binding Proteins/metabolism , Electrophoresis, Polyacrylamide Gel , Troponin T
SELECTION OF CITATIONS
SEARCH DETAIL
...