Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Nano Mater ; 6(5): 3816-3824, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36938493

ABSTRACT

A novel nanolayer is formed by means of ion irradiation applicable as protective coating. Tungsten carbide (WC)-rich nanolayers were produced at room temperature by applying ion beam mixing of various carbon/tungsten (C/W) multilayer structures using argon and xenon ions with energy in the range of 40-120 keV and fluences between 0.25 and 3 × 1016 ions/cm2. The hardness of the nanolayers was estimated by means of standard scratch test applying an atomic force microscope equipped with a diamond-coated tip (radius < 10 nm); the applied load was 2 µN. The irradiation-induced hardness of the nanolayers correlated with the areal density of the WC; with the increasing amount of WC, the hardness of the nanolayer increased. The produced layers had an order of magnitude better corrosion resistance than a commercially available WC cermet circular saw. If the WC amount was high enough, the hardness of the layer became higher than that of the investigated WC cermet. These findings allow us to tune and design the mechanical and chemical properties of the WC protective coatings.

2.
Chem Sci ; 7(8): 5249-5259, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-30155174

ABSTRACT

This work demonstrates the heterogenization of homogeneous water oxidation electrocatalysts in surface coatings produced by combining the substances with a suitable polyelectrolyte. The electrocatalysts i.e. Cu(ii)-branched peptide complexes involving a 2,3-l-diaminopropionic acid junction unit are heterogenized by building composite layers on indium-tin-oxide (ITO) electrode surface. Alternating deposition of the peptide complexes and poly(l-lysine) or poly(allylamine hydrochloride) were carried out in the presence of phosphate in a pH range of 7.5-10.5. Discussion of the results is divided to (1) characteristics of composite layer buildup and (2) electrocatalytic water oxidation and accompanying changes of these layers. For (1), optical waveguide lightmode spectroscopy (OWLS) has been applied to reveal the layer-by-layer formation of a Cu-ligand/polyelectrolyte/phosphate coating. The fabricated structures had a nanoporous topography (atomic force microscopy). As for (2), electrochemistry employing coated ITO substrates indicated improved water oxidation electrocatalysis vs. neat ITO and dependence of this improvement on the presence or absence of a histidine ligand in the deposited Cu(ii)-complexes equally, as observed in homogeneous systems. Electrochemical OWLS revealed changes in the coatings in operando, upon alternating positive-zero-positive etc. polarization: after some initial loss of the coating mass steady-state electrolysis was sustained by a compact and stable layer. According to X-ray photoelectron spectroscopy Cu remains in an N-donor ligand environment after electrolysis.

3.
Chem Commun (Camb) ; 51(29): 6322-4, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25760390

ABSTRACT

Two mononuclear Cu(II) complexes with tetrapeptides incorporating a L-2,3-diaminopropionic acid (dap) branching unit are reported to undergo PCET and catalyse water oxidation. C-terminal His extension of dap (L = 2GH) instead of Gly (L = 3G) lowers the pKa for Cu(III)H-2L (9.36 vs. 9.98) and improves the TOF at pH 11 (53 vs. 24 s(-1)).


Subject(s)
Copper/chemistry , Organometallic Compounds/chemistry , Peptides/chemistry , Water/chemistry , Catalysis , Electrochemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...