Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 10: 777121, 2022.
Article in English | MEDLINE | ID: mdl-35281111

ABSTRACT

Ribosomal biogenesis is a fundamental process necessary for cell growth and division. Ribosomal protein L5 (Rpl5) is part of the large ribosomal subunit. Mutations in this protein have been associated with the congenital disease Diamond Blackfan anemia (DBA), a so called ribosomopathy. Despite of the ubiquitous need of ribosomes, clinical manifestations of DBA include tissue-specific symptoms, e.g., craniofacial malformations, eye abnormalities, skin pigmentation failure, cardiac defects or liver cirrhosis. Here, we made use of the vertebrate model organism Xenopus laevis and showed a specific expression of rpl5 in the developing anterior tissue correlating with tissues affected in ribosomopathies. Upon Rpl5 knockdown using an antisense-based morpholino oligonucleotide approach, we showed different phenotypes affecting anterior tissue, i.e., defective cranial cartilage, malformed eyes, and microcephaly. Hence, the observed phenotypes in Xenopus laevis resemble the clinical manifestations of DBA. Analyses of the underlying molecular basis revealed that the expression of several marker genes of neural crest, eye, and brain are decreased during induction and differentiation of the respective tissue. Furthermore, Rpl5 knockdown led to decreased cell proliferation and increased cell apoptosis during early embryogenesis. Investigating the molecular mechanisms underlying Rpl5 function revealed a more than additive effect between either loss of function of Rpl5 and loss of function of c-Myc or loss of function of Rpl5 and gain of function of Tp53, suggesting a common signaling pathway of these proteins. The co-injection of the apoptosis blocking molecule Bcl2 resulted in a partial rescue of the eye phenotype, supporting the hypothesis that apoptosis is one main reason for the phenotypes occurring upon Rpl5 knockdown. With this study, we are able to shed more light on the still poorly understood molecular background of ribosomopathies.

2.
Dev Dyn ; 247(9): 1070-1082, 2018 09.
Article in English | MEDLINE | ID: mdl-30055071

ABSTRACT

BACKGROUND: The nitric oxide synthase interacting protein (Nosip) has been associated with diverse human diseases including psychological disorders. In line, early neurogenesis of mouse and Xenopus is impaired upon Nosip deficiency. Nosip knockout mice show craniofacial defects and the down-regulation of Nosip in the mouse and Xenopus leads to microcephaly. Until now, the exact underlying molecular mechanisms of these malformations were still unknown. RESULTS: Here, we show that nosip is expressed in the developing ocular system as well as the anterior neural crest cells of Xenopus laevis. Furthermore, Nosip inhibition causes severe defects in eye formation in the mouse and Xenopus. Retinal lamination as well as dorso-ventral patterning of the retina were affected in Nosip-depleted Xenopus embryos. Marker gene analysis using rax, pax6 and otx2 reveals an interference with the eye field induction and differentiation. A closer look on Nosip-deficient Xenopus embryos furthermore reveals disrupted cranial cartilage structures and an inhibition of anterior neural crest cell induction and migration shown by twist, snai2, and egr2. Moreover, foxc1 as downstream factor of retinoic acid signalling is affected upon Nosip deficiency. CONCLUSIONS: Nosip is a crucial factor for the development of anterior neural tissue such the eyes and neural crest cells. Developmental Dynamics 247:1070-1082, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Eye/growth & development , Neural Crest/growth & development , Ubiquitin-Protein Ligases/genetics , Xenopus Proteins/genetics , Xenopus laevis/growth & development , Animals , Cartilage/embryology , Cartilage/growth & development , Embryo, Nonmammalian , Embryonic Development , Eye/embryology , Gene Knockdown Techniques , Mice , Neural Crest/embryology , Neurogenesis , Skull , Xenopus laevis/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...