Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioeng Transl Med ; 8(6): e10591, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023723

ABSTRACT

Sustained release of vaccine components is a potential method to boost efficacy compared with traditional bolus injection. Here, we show that a biodegradable hyaluronic acid (HA)-scaffold, termed HA cryogel, mediates sustained antigen and adjuvant release in vivo leading to a durable immune response. Delivery from subcutaneously injected HA cryogels was assessed and a formulation which enhanced the immune response while minimizing the inflammation associated with the foreign body response was identified, termed CpG-OVA-HAC2. Dose escalation studies with CpG-OVA-HAC2 demonstrated that both the antibody and T cell responses were dose-dependent and influenced by the competency of neutrophils to perform oxidative burst. In immunodeficient post-hematopoietic stem cell transplanted mice, immunization with CpG-OVA-HAC2 elicited a strong antibody response, three orders of magnitude higher than dose-matched bolus injection. In a melanoma model, CpG-OVA-HAC2 induced dose-responsive prophylactic protection, slowing the tumor growth rate and enhancing overall survival. Upon rechallenge, none of the mice developed new tumors suggesting the development of robust immunological memory and long-lasting protection against repeat infections. CpG-OVA-HAC2 also enhanced survival in mice with established tumors. The results from this work support the potential for CpG-OVA-HAC2 to enhance vaccine delivery.

2.
Adv Sci (Weinh) ; 10(11): e2202720, 2023 04.
Article in English | MEDLINE | ID: mdl-36890657

ABSTRACT

Disease modifying antirheumatic drugs (DMARDs) have improved the prognosis of autoimmune inflammatory arthritides but a large fraction of patients display partial or nonresponsiveness to front-line DMARDs. Here, an immunoregulatory approach based on sustained joint-localized release of all-trans retinoic acid (ATRA), which modulates local immune activation and enhances disease-protective T cells and leads to systemic disease control is reported. ATRA imprints a unique chromatin landscape in T cells, which is associated with an enhancement in the differentiation of naïve T cells into anti-inflammatory regulatory T cells (Treg ) and suppression of Treg destabilization. Sustained release poly-(lactic-co-glycolic) acid (PLGA)-based biodegradable microparticles encapsulating ATRA (PLGA-ATRA MP) are retained in arthritic mouse joints after intra-articular (IA) injection. IA PLGA-ATRA MP enhance migratory Treg which in turn reduce inflammation and modify disease in injected and uninjected joints, a phenotype that is also reproduced by IA injection of Treg . PLGA-ATRA MP reduce proteoglycan loss and bone erosions in the SKG and collagen-induced arthritis mouse models of autoimmune arthritis. Strikingly, systemic disease modulation by PLGA-ATRA MP is not associated with generalized immune suppression. PLGA-ATRA MP have the potential to be developed as a disease modifying agent for autoimmune arthritis.


Subject(s)
Antirheumatic Agents , Arthritis , Autoimmune Diseases , Mice , Animals , Autoimmune Diseases/drug therapy , T-Lymphocytes, Regulatory , Inflammation , Tretinoin/pharmacology
3.
Bioeng Transl Med ; 8(1): e10309, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36684088

ABSTRACT

Neutrophils are essential effector cells for mediating rapid host defense and their insufficiency arising from therapy-induced side-effects, termed neutropenia, can lead to immunodeficiency-associated complications. In autologous hematopoietic stem cell transplantation (HSCT), neutropenia is a complication that limits therapeutic efficacy. Here, we report the development and in vivo evaluation of an injectable, biodegradable hyaluronic acid (HA)-based scaffold, termed HA cryogel, with myeloid responsive degradation behavior. In mouse models of immune deficiency, we show that the infiltration of functional myeloid-lineage cells, specifically neutrophils, is essential to mediate HA cryogel degradation. Post-HSCT neutropenia in recipient mice delayed degradation of HA cryogels by up to 3 weeks. We harnessed the neutrophil-responsive degradation to sustain the release of granulocyte colony stimulating factor (G-CSF) from HA cryogels. Sustained release of G-CSF from HA cryogels enhanced post-HSCT neutrophil recovery, comparable to pegylated G-CSF, which, in turn, accelerated cryogel degradation. HA cryogels are a potential approach for enhancing neutrophils and concurrently assessing immune recovery in neutropenic hosts.

5.
Euro Med J Innov ; 5(1): 52-62, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34013158

ABSTRACT

Inflammation is an essential cytokine-mediated process for generating a neutralizing immune response against pathogens and is generally protective. However, aberrant or excessive production of pro-inflammatory cytokines is associated with uncontrolled local and systemic inflammation, resulting in cell death and often irreversible tissue damage. Uncontrolled inflammation can manifest over timescales spanning hours to years and is primarily dependent on the triggering event. Rapid and potentially lethal increase in cytokine production, or a 'cytokine storm,' develops in hours to days and is associated with cancer cell-based immunotherapies, such as CAR-T cell therapy. On the other hand, some bacterial and viral infections with high microbial replication or highly potent antigens elicit immune responses that result in supraphysiological systemic cytokine concentrations which manifest over days to weeks. Immune dysregulation in autoimmune diseases can lead to chronic cytokine-mediated tissue damage spanning months to years, which often occurs episodically. While the initiating events and cellular participants may differ in these disease processes, many of the cytokines that drive disease progression are shared. For example, upregulation of IL-1, IL-6, IFN-γ, TNF, and GM-CSF frequently coincides with cytokine storm, sepsis, and autoimmune disease. Targeted inhibition of these pro-inflammatory molecules via antagonist monoclonal antibodies has improved clinical outcomes, but the complexity of the underlying immune dysregulation results in high variability. Rather than a "one size fits all" treatment approach, an identification of disease endotypes may permit the development of effective therapeutic strategies that address the contributors of disease progression. Here, we present a literature review of the cytokine-associated etiology of acute and chronic cytokine-mediated tissue damage, describe successes and challenges in developing clinical treatments, and highlight advancements in preclinical therapeutic strategies for mitigating pathological cytokine production.

6.
Expert Opin Drug Discov ; 16(1): 89-99, 2021 01.
Article in English | MEDLINE | ID: mdl-32867561

ABSTRACT

INTRODUCTION: Breakthroughs in cancer immunotherapy have spurred interest in the development of vaccines to mediate prophylactic protection and therapeutic efficacy against primary tumors or to prevent relapse. However, immunosuppressive mechanisms employed by cancer cells to generate effective resistance have hampered clinical translation of therapeutic cancer vaccines. To enhance vaccine efficacy, the immunomodulatory properties of cytoreductive therapies could amplify a cancer-specific immune response. AREAS COVERED: Herein, the authors discuss therapeutic cancer vaccines that harness whole cells and antigen-targeted vaccines. First, recent advancements in both autologous and allogeneic whole-cell vaccines and combinations with checkpoint blockade and chemotherapy are reviewed. Next, tumor antigen-targeted vaccines using peptide-based vaccines and DNA-vaccines are discussed. Finally, combination therapies using antigen-targeted vaccines are reviewed. EXPERT OPINION: A deeper understanding of the immunostimulatory properties of cytoreductive therapies has supported their utility in combination therapies involving cancer vaccines as a potential strategy to induce a durable anti-tumor immune response for multiple types of cancers. Based on current evidence, combination therapies may have synergies that depend on the identity of the cytotoxic agent, vaccine target, dosing schedule, and cancer type. Together, these observations suggest that combining cancer vaccines with immunomodulatory cytoreductive therapy is a promising strategy for cancer therapy.


Subject(s)
Cancer Vaccines/administration & dosage , Immunotherapy/methods , Neoplasms/therapy , Animals , Antigens, Neoplasm/immunology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Cancer Vaccines/immunology , Combined Modality Therapy , Humans , Neoplasms/immunology
7.
Biomater Sci ; 8(15): 4186-4198, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32441280

ABSTRACT

Regulatory T cells (Tregs) are critical mediators of peripheral immune tolerance. Tregs suppress immune activation against self-antigens and are the focus of cell-based therapies for autoimmune diseases. However, Tregs circulate at a very low frequency in blood, limiting the number of cells that can be isolated by leukapheresis. To effectively expand Tregsex vivo for cell therapy, we report the metabolic modulation of T cells using mono-(6-amino-6-deoxy)-ß-cyclodextrin (ßCD-NH2) encapsulated rapamycin (Rapa). Encapsulating Rapa in ß-cyclodextrin increased its aqueous solubility ∼154-fold and maintained bioactivity for at least 30 days. ßCD-NH2-Rapa complexes (CRCs) enriched the fraction of CD4+CD25+FoxP3+ mouse T (mT) cells and human T (hT) cells up to 6-fold and up to 2-fold respectively and suppressed the overall expansion of effector T cells by 5-fold in both species. Combining CRCs and transforming growth factor beta-1 (TGF-ß1) synergistically promoted the expansion of CD4+CD25+FoxP3+ T cells. CRCs significantly reduced the fraction of pro-inflammatory interferon-gamma (IFN-γ) expressing CD4+ T cells, suppressing this Th1-associated cytokine while enhancing the fraction of IFN-γ- tumor necrosis factor-alpha (TNF-α) expressing CD4+ T cells. We developed a model using kinetic rate equations to describe the influence of the initial fraction of naïve T cells on the enrichment of Tregsin vitro. The model related the differences in the expansion kinetics of mT and hT cells to their susceptibility for immunophenotypic modulation. CRCs may be an effective and potent means for phenotypic modulation of T cells and the enrichment of Tregsin vitro. Our findings contribute to the development of experimental and analytical techniques for manufacturing Treg based immunotherapies.


Subject(s)
Forkhead Transcription Factors , T-Lymphocytes, Regulatory , Cell Proliferation , Immunotherapy , Sirolimus
8.
Article in English | MEDLINE | ID: mdl-30972976

ABSTRACT

Harnessing an individual's immune cells to mediate antitumor and antiviral responses is a life-saving option for some patients with otherwise intractable forms of cancer and infectious disease. In particular, T-cell-based engineered immune cells are a powerful new class of therapeutics with remarkable efficacy. Clinical experience has helped to define some of the major challenges for reliable, safe, and effective deployment of T-cells against a broad range of diseases. While poised to revolutionize immunotherapy, scalable manufacturing, safety, specificity, and the development of resistance are potential roadblocks in their widespread usage. The development of molecular engineering tools to allow for the direct or indirect engineering of T-cells to enable one to troubleshoot delivery issues, amplify immunomodulatory effects, integrate the synergistic effects of different molecules, and home to the target cells in vivo. In this review, we will analyze thus-far developed cell- and material-based tools for enhancing T-cell therapies, including methods to improve safety and specificity, enhancing efficacy, and overcoming limitations in scalable manufacturing. We summarize the potential of T-cells as immune modulating therapies and the potential future directions for enabling their adoption for a broad range of diseases. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Cells at the Nanoscale.


Subject(s)
Genetic Engineering , Immunotherapy , T-Lymphocytes/immunology , Animals , Antigens/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Receptors, Chimeric Antigen/metabolism
9.
Nat Biotechnol ; 37(3): 293-302, 2019 03.
Article in English | MEDLINE | ID: mdl-30742125

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for multiple disorders, but deficiency and dysregulation of T cells limit its utility. Here we report a biomaterial-based scaffold that mimics features of T cell lymphopoiesis in the bone marrow. The bone marrow cryogel (BMC) releases bone morphogenetic protein-2 to recruit stromal cells and presents the Notch ligand Delta-like ligand-4 to facilitate T cell lineage specification of mouse and human hematopoietic progenitor cells. BMCs subcutaneously injected in mice at the time of HSCT enhanced T cell progenitor seeding of the thymus, T cell neogenesis and diversification of the T cell receptor repertoire. Peripheral T cell reconstitution increased ~6-fold in mouse HSCT and ~2-fold in human xenogeneic HSCT. Furthermore, BMCs promoted donor CD4+ regulatory T cell generation and improved survival after allogeneic HSCT. In comparison to adoptive transfer of T cell progenitors, BMCs increased donor chimerism, T cell generation and antigen-specific T cell responses to vaccination. BMCs may provide an off-the-shelf approach for enhancing T cell regeneration and mitigating graft-versus-host disease in HSCT.


Subject(s)
Bone Marrow Transplantation , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation , T-Lymphocytes, Regulatory/immunology , Tissue Scaffolds , Adoptive Transfer/methods , Animals , Bone Marrow , Chimerism , Graft vs Host Disease/pathology , Graft vs Host Disease/therapy , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Humans , Mice , T-Lymphocytes, Regulatory/cytology , Transplantation, Heterologous/methods , Transplantation, Homologous
10.
Phys Med Biol ; 61(11): N291-310, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27203621

ABSTRACT

Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials ((18)O, Cu, and (68)Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm(-3)) and beef (~1.0 g cm(-3)) were embedded with Cu or (68)Zn foils of several volumes (10-50 mm(3)). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils' PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.


Subject(s)
Fiducial Markers , Positron-Emission Tomography , Proton Therapy , Radiotherapy, Image-Guided/standards , Humans , Metals , Phantoms, Imaging , Prostheses and Implants
11.
Sci Rep ; 5: 9850, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25984967

ABSTRACT

The physical properties of particles used in radiation therapy, such as protons, have been well characterized, and their dose distributions are superior to photon-based treatments. However, proton therapy may also have inherent biologic advantages that have not been capitalized on. Unlike photon beams, the linear energy transfer (LET) and hence biologic effectiveness of particle beams varies along the beam path. Selective placement of areas of high effectiveness could enhance tumor cell kill and simultaneously spare normal tissues. However, previous methods for mapping spatial variations in biologic effectiveness are time-consuming and often yield inconsistent results with large uncertainties. Thus the data needed to accurately model relative biological effectiveness to guide novel treatment planning approaches are limited. We used Monte Carlo modeling and high-content automated clonogenic survival assays to spatially map the biologic effectiveness of scanned proton beams with high accuracy and throughput while minimizing biological uncertainties. We found that the relationship between cell kill, dose, and LET, is complex and non-unique. Measured biologic effects were substantially greater than in most previous reports, and non-linear surviving fraction response was observed even for the highest LET values. Extension of this approach could generate data needed to optimize proton therapy plans incorporating variable RBE.


Subject(s)
Elementary Particles , Radiotherapy , Relative Biological Effectiveness , Cell Line, Tumor , Cell Survival/radiation effects , Dose-Response Relationship, Radiation , Humans , Monte Carlo Method
12.
Pract Radiat Oncol ; 5(4): e283-90, 2015.
Article in English | MEDLINE | ID: mdl-25804105

ABSTRACT

PURPOSE: Proton-accelerated partial breast irradiation (APBI) is early in its developmental phase without standardized treatment parameters. We report an approach to multibeam proton APBI using a universally available supine setup and deliberate beam arrangement strategy to limit the total area of skin receiving a full dose while being robust for interfraction variation. METHODS AND MATERIALS: Thirty-three American Society for Radiation Oncology consensus-suitable/cautionary APBI candidates were treated using a passively scattered proton beam between 2010 and 2014 to 34 Gy relative biological effectiveness in 10 fractions twice daily. All patients were immobilized in a Vac-Lok cradle, typically with the arm down, and adducted to mound the breast and facilitate multiple, optimal en face beams. Radiopaque wires were placed on the surgical scar and 3 markers separate from the scar were placed elsewhere on the breast. All markers were used for each setup and removed before treatment. Marker displacement, wire rotation, and wire displacement were recorded from 10 random patients (100 orthogonal films). A 15-mm expansion was made to the tumor bed to obtain a clinical target volume, and followed by a 5-mm skin contraction and exclusion of the chest wall. A radial planning target volume margin of 5 mm was used. RESULTS: Across 100 pretreatment images, median displacement of 3 distinct skin set-up markers was 3, 4, and 3 mm. Displacement of the scar wire in the X and Y direction was 0 and 1 mm, respectively. Among 28 verification scans performed, only 1 resulted in adaptive planning because of the initial presence of an air pocket in the lumpectomy cavity that resolved spontaneously during treatment. CONCLUSIONS: APBI proton treatment using a supine approach was largely reproducible. Inter-fraction variation demonstrates 5-mm radial planning margins were adequate; however, outliers do occur and films should be reviewed critically and in real time. This technique is straightforward and could be used at any proton facility without the need for specialized equipment.


Subject(s)
Breast Neoplasms/radiotherapy , Patient Positioning/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Breast/physiology , Female , Humans , Reproducibility of Results , Supine Position
SELECTION OF CITATIONS
SEARCH DETAIL
...