Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(12): 8381-8393, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38484170

ABSTRACT

Using carbon dioxide (CO2) to make recyclable thermoplastics could reduce greenhouse gas emissions associated with polymer manufacturing. CO2/cyclic epoxide ring-opening copolymerization (ROCOP) allows for >30 wt % of the polycarbonate to derive from CO2; so far, the field has largely focused on oligocarbonates. In contrast, efficient catalysts for high molar mass polycarbonates are underinvestigated, and the resulting thermoplastic structure-property relationships, processing, and recycling need to be elucidated. This work describes a new organometallic Mg(II)Co(II) catalyst that combines high productivity, low loading tolerance, and the highest polymerization control to yield polycarbonates with number average molecular weight (Mn) values from 4 to 130 kg mol-1, with narrow, monomodal distributions. It is used in the ROCOP of CO2 with bicyclic epoxides to produce a series of samples, each with Mn > 100 kg mol-1, of poly(cyclohexene carbonate) (PCHC), poly(vinyl-cyclohexene carbonate) (PvCHC), poly(ethyl-cyclohexene carbonate) (PeCHC, by hydrogenation of PvCHC), and poly(cyclopentene carbonate) (PCPC). All these materials are amorphous thermoplastics, with high glass transition temperatures (85 < Tg < 126 °C, by differential scanning calorimetry) and high thermal stability (Td > 260 °C). The cyclic ring substituents mediate the materials' chain entanglements, viscosity, and glass transition temperatures. Specifically, PCPC was found to have 10× lower entanglement molecular weight (Me)n and 100× lower zero-shear viscosity compared to those of PCHC, showing potential as a future thermoplastic. All these high molecular weight polymers are fully recyclable, either by reprocessing or by using the Mg(II)Co(II) catalyst for highly selective depolymerizations to epoxides and CO2. PCPC shows the fastest depolymerization rates, achieving an activity of 2500 h-1 and >99% selectivity for cyclopentene oxide and CO2.

2.
Nature ; 626(7997): 45-57, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297170

ABSTRACT

The linear production and consumption of plastics today is unsustainable. It creates large amounts of unnecessary and mismanaged waste, pollution and carbon dioxide emissions, undermining global climate targets and the Sustainable Development Goals. This Perspective provides an integrated technological, economic and legal view on how to deliver a circular carbon and plastics economy that minimizes carbon dioxide emissions. Different pathways that maximize recirculation of carbon (dioxide) between plastics waste and feedstocks are outlined, including mechanical, chemical and biological recycling, and those involving the use of biomass and carbon dioxide. Four future scenarios are described, only one of which achieves sufficient greenhouse gas savings in line with global climate targets. Such a bold system change requires 50% reduction in future plastic demand, complete phase-out of fossil-derived plastics, 95% recycling rates of retrievable plastics and use of renewable energy. It is hard to overstate the challenge of achieving this goal. We therefore present a roadmap outlining the scale and timing of the economic and legal interventions that could possibly support this. Assessing the service lifespan and recoverability of plastic products, along with considerations of sufficiency and smart design, can moreover provide design principles to guide future manufacturing, use and disposal of plastics.


Subject(s)
Environmental Pollution , Goals , Plastics , Recycling , Sustainable Development , Biomass , Carbon Dioxide/analysis , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Environmental Pollution/economics , Environmental Pollution/legislation & jurisprudence , Environmental Pollution/prevention & control , Environmental Pollution/statistics & numerical data , Fossil Fuels , Global Warming/prevention & control , Greenhouse Gases/analysis , Plastics/chemical synthesis , Plastics/economics , Plastics/metabolism , Plastics/supply & distribution , Recycling/economics , Recycling/legislation & jurisprudence , Recycling/methods , Recycling/trends , Renewable Energy , Sustainable Development/economics , Sustainable Development/legislation & jurisprudence , Sustainable Development/trends , Technology/economics , Technology/legislation & jurisprudence , Technology/methods , Technology/trends
3.
Nat Commun ; 14(1): 4783, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553344

ABSTRACT

Understanding the chemistry underpinning intermetallic synergy and the discovery of generally applicable structure-performances relationships are major challenges in catalysis. Additionally, high-performance catalysts using earth-abundant, non-toxic and inexpensive elements must be prioritised. Here, a series of heterodinuclear catalysts of the form Co(III)M(I/II), where M(I/II) = Na(I), K(I), Ca(II), Sr(II), Ba(II) are evaluated for three different polymerizations, by assessment of rate constants, turn over frequencies, polymer selectivity and control. This allows for comparisons of performances both within and between catalysts containing Group I and II metals for CO2/propene oxide ring-opening copolymerization (ROCOP), propene oxide/phthalic anhydride ROCOP and lactide ring-opening polymerization (ROP). The data reveal new structure-performance correlations that apply across all the different polymerizations: catalysts featuring s-block metals of lower Lewis acidity show higher rates and selectivity. The epoxide/heterocumulene ROCOPs both show exponential activity increases (vs. Lewis acidity, measured by the pKa of [M(OH2)m]n+), whilst the lactide ROP activity and CO2/epoxide selectivity show linear increases. Such clear structure-activity/selectivity correlations are very unusual, yet are fully rationalised by the polymerization mechanisms and the chemistry of the catalytic intermediates. The general applicability across three different polymerizations is significant for future exploitation of catalytic synergy and provides a framework to improve other catalysts.

4.
J Am Chem Soc ; 144(15): 6882-6893, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35388696

ABSTRACT

Poly(ester-alt-ethers) can combine beneficial ether linkage flexibility and polarity with ester linkage hydrolysability, furnishing fully degradable polymers. Despite their promising properties, this class of polymers remains underexplored, in part due to difficulties in polymer synthesis. Here, a catalyzed copolymerization using commercially available monomers, butylene oxide (BO)/oxetane (OX), tetrahydrofuran (THF), and phthalic anhydride (PA), accesses a series of well-defined poly(ester-alt-ethers). A Zr(IV) catalyst is reported that yields polymer repeat units comprising a ring-opened PA (A), followed by two ring-opened cyclic ethers (B/C) (-ABB- or -ABC-). It operates with high polymerization control, good rate, and successfully enchains epoxides, oxetane, and/or tetrahydrofurans, providing a straightforward means to moderate the distance between ester linkages. Kinetic analysis of PA/BO copolymerization, with/without THF, reveals an overall second-order rate law: first order in both catalyst and butylene oxide concentrations but zero order in phthalic anhydride and, where it is present, zero order in THF. Poly(ester-alt-ethers) have lower glass-transition temperatures (-16 °C < Tg < 12 °C) than the analogous alternating polyesters, consistent with the greater backbone flexibility. They also show faster ester hydrolysis rates compared with the analogous AB polymers. The Zr(IV) catalyst furnishes poly(ester-alt-ethers) from a range of commercially available epoxides and anhydride; it presents a straightforward method to moderate degradable polymers' properties.


Subject(s)
Anhydrides , Epoxy Compounds , Catalysis , Esters , Ethers , Ethers, Cyclic , Furans , Kinetics , Oxides , Phthalic Anhydrides , Polymerization , Polymers
5.
J R Soc Interface ; 19(186): 20210771, 2022 01.
Article in English | MEDLINE | ID: mdl-35078338

ABSTRACT

Antimicrobial resistance (AMR) is a global health issue. One key factor contributing to AMR is the ability of bacteria to export drugs through efflux pumps, which relies on the ATP-dependent expression and interaction of several controlling genes. Recent studies have shown that significant cell-to-cell ATP variability exists within clonal bacterial populations, but the contribution of intrinsic cell-to-cell ATP heterogeneity is generally overlooked in understanding efflux pumps. Here, we consider how ATP variability influences gene regulatory networks controlling expression of efflux pump genes in two bacterial species. We develop and apply a generalizable Boolean modelling framework, developed to incorporate the dependence of gene expression dynamics on available cellular energy supply. Theoretical results show that differences in energy availability can cause pronounced downstream heterogeneity in efflux gene expression. Cells with higher energy availability have a superior response to stressors. Furthermore, in the absence of stress, model bacteria develop heterogeneous pulses of efflux pump gene expression which contribute to a sustained sub-population of cells with increased efflux expression activity, potentially conferring a continuous pool of intrinsically resistant bacteria. This modelling approach thus reveals an important source of heterogeneity in cell responses to antimicrobials and sheds light on potentially targetable aspects of efflux pump-related antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Bacteria , Escherichia coli
6.
Prehosp Emerg Care ; : 1, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34524053

ABSTRACT

This position statement was approved by the NAEMSP Board of Directors on 8/24/21.

7.
Chem Sci ; 12(22): 7882-7887, 2021 May 10.
Article in English | MEDLINE | ID: mdl-34168841

ABSTRACT

Highly-symmetrical, thorium and uranium octakis-carbene 'sandwich' complexes have been prepared by 'sandwiching' the An(iv) cations between two anionic macrocyclic tetra-NHC ligands, one with sixteen atoms and the other with eighteen atoms. The complexes were characterized by a range of experimental methods and DFT calculations. X-ray crystallography confirms the geometry at the metal centre can be set by the size of the macrocyclic ring, leading to either square prismatic or square anti-prismatic shapes; the geometry of the latter is retained in solution, which also undergoes reversible, electrochemical one-electron oxidation or reduction for the uranium variant. DFT calculations reveal a frontier orbital picture that is similar to thorocene and uranocene, in which the NHC ligands show almost exclusively σ-donation to the metal without π-backbonding.

8.
Organometallics ; 39(9): 1619-1627, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32421072

ABSTRACT

Titanium(IV) complexes of amino-tris(phenolate) ligands (LTiX, X = chloride, isopropoxide) together with bis(triphenylphosphine)iminium chloride (PPNCl) are active catalyst systems for the ring-opening copolymerization of carbon dioxide and cyclohexene oxide. They show moderate activity, with turnover frequency values of ∼60 h-1 (0.02 mol % of catalyst, 80 °C, 40 bar of CO2) and high selectivity (carbonate linkages >90%), but their absolute performances are lower than those of the most active Ti(IV) catalyst systems. The reactions proceed with linear evolution of polycarbonate (PCHC) molar mass with epoxide conversion, consistent with controlled polymerizations, and evolve bimodal molar mass distributions of PCHC (up to M n = 42 kg mol-1). The stoichiometric reaction between [LTiO i Pr] and tetraphenylphosphonium chloride, PPh4Cl, allows isolation of the putative catalytic intermediate [LTi(O i Pr)Cl]-, which is characterized using single-crystal X-ray diffraction techniques. The anionic titanium complex [LTi(OR)Cl]- is proposed as a model for the propagating alkoxide intermediates in the catalytic cycle.

9.
Sci Rep ; 9(1): 20196, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882965

ABSTRACT

Cells generate phenotypic diversity both during development and in response to stressful and changing environments, aiding survival. Functionally vital cell fate decisions from a range of phenotypic choices are made by regulatory networks, the dynamics of which rely on gene expression and hence depend on the cellular energy budget (and particularly ATP levels). However, despite pronounced cell-to-cell ATP differences observed across biological systems, the influence of energy availability on regulatory network dynamics is often overlooked as a cellular decision-making modulator, limiting our knowledge of how energy budgets affect cell behaviour. Here, we consider a mathematical model of a highly generalisable, ATP-dependent, decision-making regulatory network, and show that cell-to-cell ATP variability changes the sets of decisions a cell can make. Our model shows that increasing intracellular energy levels can increase the number of supported stable phenotypes, corresponding to increased decision-making capacity. Model cells with sub-threshold intracellular energy are limited to a singular phenotype, forcing the adoption of a specific cell fate. We suggest that energetic differences between cells may be an important consideration to help explain observed variability in cellular decision-making across biological systems.


Subject(s)
Energy Metabolism , Gene Regulatory Networks , Adenosine Triphosphate/metabolism , Cell Lineage , Models, Biological , Phenotype
10.
Article in English | MEDLINE | ID: mdl-31592204

ABSTRACT

The identification and arrest of the Golden State Killer using DNA uploaded to an ancestry database occurred shortly before recruitment for the National Institutes of Health's (NIH) All of Us Study commenced, with a goal of enrolling and collecting DNA, health, and lifestyle information from one million Americans. It also highlighted the need to ensure prospective research participants that their confidentiality will be protected and their materials used appropriately. But there are questions about how well current law protects against these privacy risks. This article is the first to consider comprehensively and simultaneously all the federal and state laws offering protections to participants in genomic research. The literature typically focuses on the federal laws in isolation, questioning the strengths of federal legal protections for genomic research participants provided in the Common Rule, the HIPAA Privacy Rule, or the Genetic Information Nondiscrimination Act. Nevertheless, we found significant numbers and surprising variety among state laws that provide greater protections than federal laws, often filling in federal gaps by broadening the applicability of privacy or nondiscrimination standards or by providing important remedies for individuals harmed by breaches. Identifying and explaining the protections these laws provide is significant both to allow prospective participants to accurately weigh the risks of enrolling in these studies and as models for how federal legal protections could be expanded to fill known gaps.

11.
Chem Sci ; 9(42): 8035-8045, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30568765

ABSTRACT

A series of rare earth complexes of the form Ln(LR)3 supported by bidentate ortho-aryloxide-NHC ligands are reported (LR = 2-O-3,5-tBu2-C6H2(1-C{N(CH)2N(R)})); R = iPr, tBu, Mes; Ln = Ce, Sm, Eu). The cerium complexes cleanly and quantitatively insert carbon dioxide exclusively into all three cerium carbene bonds, forming Ce(LR·CO2)3. The insertion is reversible only for the mesityl-substituted complex Ce(LMes)3. Analysis of the capacity of Ce(LR)3 to insert a range of heteroallenes that are isoelectronic with CO2 reveals the solvent and ligand size dependence of the selectivity. This is important because only the complexes capable of reversible CO2-insertion are competent catalysts for catalytic conversions of CO2. Preliminary studies show that only Ce(LMes·CO2)3 catalyses the formation of propylene carbonate from propylene oxide under 1 atm of CO2 pressure. The mono-ligand complexes can be isolated from reactions using LiCe(NiPr2)4 as a starting material; LiBr adducts [Ce(LR)(NiPr2)Br·LiBr(THF)]2 (R = Me, iPr) are reported, along with a hexanuclear N-heterocyclic dicarbene [Li2Ce3(OArCMe-H)3(NiPr2)5(THF)2]2 by-product. The analogous para-aryloxide-NHC proligand (p-LMes = 4-O-2,6-tBu2-C6H2(1-C{N(CH)2NMes}))) has been made for comparison, but the rare earth tris-ligand complexes Ln(p-LMes)3(THF)2 (Ln = Y, Ce) are too reactive for straightforward Lewis pair separated chemistry to be usefully carried out.

12.
Org Biomol Chem ; 14(38): 8957-65, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27489030

ABSTRACT

The catalytic enantioselective synthesis of a range of cis-pyrrolizine carboxylate derivatives with outstanding stereocontrol (14 examples, >95 : 5 dr, >98 : 2 er) through an isothiourea-catalyzed intramolecular Michael addition-lactonisation and ring-opening approach from the corresponding enone acid is reported. An optimised and straightforward three-step synthetic route to the enone acid starting materials from readily available pyrrole-2-carboxaldehydes is delineated, with benzotetramisole (5 mol%) proving the optimal catalyst for the enantioselective process. Ring-opening of the pyrrolizine dihydropyranone products with either MeOH or a range of amines leads to the desired products in excellent yield and enantioselectivity. Computation has been used to probe the factors leading to high stereocontrol, with the formation of the observed cis-steroisomer predicted to be kinetically and thermodynamically favoured.

13.
J Invest Dermatol ; 130(9): 2250-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20520630

ABSTRACT

Melanoma remains notoriously resistant to current chemotherapeutics, leaving an acute need for novel therapeutic approaches. The aim of this study was to determine the prognostic and therapeutic significance of X-linked inhibitor of apoptosis protein (XIAP) in melanoma through correlation of XIAP expression with disease stage, RAS/RAF mutational status, clinical outcome, and susceptibility to endoplasmic reticulum (ER) stress-induced cell death. XIAP expression and N-RAS/B-RAF mutational status were retrospectively determined in a cohort of 55 primary cutaneous melanocytic lesions selected and grouped according to the American Joint Committee on Cancer staging system. Short hairpin RNA interference of XIAP was used to analyze the effect of XIAP expression on ER stress-induced apoptosis in response to fenretinide or bortezomib in vitro. The results showed that XIAP positivity increased with progressive disease stage, although there was no significant correlation between XIAP positivity and combined N-RAS/B-RAF mutational status or clinical outcome. However, XIAP knockdown significantly increased ER stress-induced apoptosis of melanoma cells in a caspase-dependant manner. The correlation of XIAP expression with disease stage, as well as data showing that XIAP knockdown significantly increases fenretinide and bortezomib-induced apoptosis of metastatic melanoma cells, suggests that XIAP may prove to be an effective therapeutic target for melanoma therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Boronic Acids/pharmacology , Fenretinide/pharmacology , Melanoma/drug therapy , Pyrazines/pharmacology , Skin Neoplasms/drug therapy , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Apoptosis/drug effects , Apoptosis/physiology , Bortezomib , Drug Resistance, Neoplasm , Endoplasmic Reticulum/physiology , Female , Gene Expression Regulation, Neoplastic , Genes, ras/physiology , Humans , In Vitro Techniques , Male , Melanoma/metabolism , Melanoma/pathology , Middle Aged , Mutation/genetics , Nevus, Pigmented/drug therapy , Nevus, Pigmented/metabolism , Nevus, Pigmented/pathology , Proto-Oncogene Proteins B-raf/genetics , RNA, Small Interfering , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Stress, Physiological/physiology , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism
14.
J Clin Microbiol ; 47(1): 220-2, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19005148

ABSTRACT

The Gen-Probe Aptima human immunodeficiency virus type 1 (HIV-1) RNA assay was adapted for the diagnosis of HIV infection in infants by using dried blood spots. The assay was 99% sensitive (128/129) and 100% specific (162/162). This may prove useful in resource-limited settings, since it precludes the need for a phlebotomist and maintenance of a cold chain.


Subject(s)
Blood/virology , HIV Infections/diagnosis , HIV-1/genetics , RNA, Viral/blood , RNA, Viral/genetics , Specimen Handling/methods , Desiccation , Humans , Infant , Sensitivity and Specificity
15.
J Clin Microbiol ; 46(10): 3482-3, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18685013

ABSTRACT

Modified protocols of two rapid tests were compared with a less sensitive (LS) (detuned) enzyme immunoassay (EIA) for their abilities to distinguish recent human immunodeficiency virus (HIV) seroconversion from long-term infections. The results for samples from 100 HIV-positive patient that had previously been tested by the Vironostika LS EIA had a 97% concordance with the results of the Determine HIV 1/2 assay and 93% concordance with those of the OraQuick HIV 1/2 assay.


Subject(s)
HIV Antibodies/blood , HIV Infections/diagnosis , HIV/isolation & purification , HIV/immunology , HIV Seropositivity , Humans , Immunoenzyme Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...