Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(18): 12365-12374, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38656163

ABSTRACT

Through mechanistic work and rational design, we have developed the fastest organometallic abiotic Cys bioconjugation. As a result, the developed organometallic Au(III) bioconjugation reagents enable selective labeling of Cys moieties down to picomolar concentrations and allow for the rapid construction of complex heterostructures from peptides, proteins, and oligonucleotides. This work showcases how organometallic chemistry can be interfaced with biomolecules and lead to a range of reactivities that are largely unmatched by classical organic chemistry tools.


Subject(s)
Cysteine , Gold , Cysteine/chemistry , Gold/chemistry , Peptides/chemistry , Organogold Compounds/chemistry , Organogold Compounds/chemical synthesis , Molecular Structure
2.
Adv Mater ; 36(21): e2312597, 2024 May.
Article in English | MEDLINE | ID: mdl-38301612

ABSTRACT

Thermochromism, the change in color of a material with temperature, is the fundamental basis of optical thermometry. A longstanding challenge in realizing sensitive optical thermometers for widespread use is identifying materials with pronounced thermometric optical performance in the visible range. Herein, it is demonstrated that single crystals of indium selenium iodide (InSeI), a 1D van der Waals (vdW) solid consisting of weakly bound helical chains, exhibit considerable visible range thermochromism. A strong temperature-dependent optical band edge absorption shift ranging from 450 to 530 nm (2.8 to 2.3 eV) over a 380 K temperature range with an experimental (dEg/dT)max value extracted to be 1.26 × 10-3 eV K-1 is shown. This value lies appreciably above most dense conventional semiconductors in the visible range and is comparable to soft lattice solids. The authors further seek to understand the origin of this unusually sensitive thermochromic behavior and find that it arises from strong electron-phonon interactions and anharmonic phonons that significantly broaden band edges and lower the Eg with increasing temperature. The identification of structural signatures resulting in sensitive thermochromism in 1D vdW crystals opens avenues in discovering low-dimensional solids with strong temperature-dependent optical responses across broad spectral windows, dimensionalities, and size regimes.

3.
J Phys Chem A ; 127(25): 5324-5334, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37316977

ABSTRACT

The incorporation of charged groups proximal to a redox active transition metal center can impact the local electric field, altering redox behavior and enhancing catalysis. Vanadyl salen (salen = N,N'-ethylenebis(salicylideneaminato)) complexes functionalized with a crown ether containing a nonredox active metal cation (V-Na, V-K, V-Ba, V-La, V-Ce, and V-Nd) were synthesized. The electrochemical behavior of this series of complexes was investigated by cyclic voltammetry in solvents with varying polarity and dielectric constant (ε) (acetonitrile, ε = 37.5; N,N-dimethylformamide, ε = 36.7; and dichloromethane, ε = 8.93). The vanadium(V/IV) reduction potential shifted anodically with increasing cation charge compared to a complex lacking a proximal cation (ΔE1/2 > 900 mV in acetonitrile and >700 mV in dichloromethane). In contrast, the reduction potential for all vanadyl salen-crown complexes measured in N,N-dimethylformamide was insensitive to the magnitude of the cationic charge, regardless of the electrolyte or counteranion used. Titration studies of N,N-dimethylformamide into acetonitrile resulted in cathodic shifting of the vanadium(V/IV) reduction potential with increasing concentration of N,N-dimethylformamide. Binding constants of N,N-dimethylformamide (log(KDMF)) for the series of crown complexes show increased binding affinity in the order of V-La > V-Ba > V-K > (salen)V(O), indicating an enhancement of Lewis acid/base interaction with increasing cationic charge. The redox behavior of (salen)V(O) and (salen-OMe)V(O) (salen-OMe = N,N'-ethylenebis(3-methoxysalicylideneamine) was also investigated and compared to the crown-containing complexes. For (salen-OMe)V(O), a weak association of triflate salt at the vanadium(IV) oxidation state was observed through cyclic voltammetry titration experiments, and cation dissociation upon oxidation to vanadium(V) was identified. These studies demonstrate the noninnocent role of solvent coordination and cation/anion effects on redox behavior and, by extension, the local electric field.

4.
Dalton Trans ; 50(8): 2746-2756, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33459317

ABSTRACT

Manganese ([Mn(CO)3]) and rhenium tricarbonyl ([Re(CO)3]) complexes represent a workhorse family of compounds with applications in a variety of fields. Here, the coordination, structural, and electrochemical properties of a family of mono- and bimetallic [Mn(CO)3] and [Re(CO)3] complexes are explored. In particular, a novel heterobimetallic complex featuring both [Mn(CO)3] and [Re(CO)3] units supported by 2,2'-bipyrimidine (bpm) has been synthesized, structurally characterized, and compared to the analogous monomeric and homobimetallic complexes. To enable a comprehensive structural analysis for the series of complexes, we have carried out new single crystal X-ray diffraction studies of seven compounds: Re(CO)3Cl(bpm), anti-[{Re(CO3)Cl}2(bpm)], Mn(CO)3Br(bpz) (bpz = 2,2'-bipyrazine), Mn(CO)3Br(bpm), syn- and anti-[{Mn(CO3)Br}2(bpm)], and syn-[Mn(CO3)Br(bpm)Re(CO)3Br]. Electrochemical studies reveal that the bimetallic complexes are reduced at much more positive potentials (ΔE≥ 380 mV) compared to their monometallic analogues. This redox behavior is consistent with introduction of the second tricarbonyl unit which inductively withdraws electron density from the bridging, redox-active bpm ligand, resulting in more positive reduction potentials. [Re(CO3)Cl]2(bpm) was reduced with cobaltocene; the electron paramagnetic resonance spectrum of the product exhibits an isotropic signal (near g = 2) characteristic of a ligand-centered bpm radical. Our findings highlight the facile synthesis as well as the structural characteristics and unique electrochemical behavior of this family of complexes.

5.
J Am Chem Soc ; 142(46): 19438-19445, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33141560

ABSTRACT

The catalytic reduction of CO2 to HCO2- requires a formal transfer of a hydride (two electrons, one proton). Synthetic approaches for inorganic molecular catalysts have exclusively relied on classic metal hydrides, where the proton and electrons originate from the metal (via heterolytic cleavage of an M-H bond). An analysis of the scaling relationships that exist in classic metal hydrides reveal that hydride donors sufficiently hydridic to perform CO2 reduction are only accessible at very reducing electrochemical potentials, which is consistent with known synthetic electrocatalysts. By comparison, the formate dehydrogenase enzymes operate at relatively mild potentials. In contrast to reported synthetic catalysts, none of the major mechanistic proposals for hydride transfer in formate dehydrogenase proceed through a classic metal hydride. Instead, they invoke formal hydride transfer from an orthogonal or bidirectional mechanism, where the proton and electrons are not colocated. We discuss the thermodynamic advantages of this approach for favoring CO2 reduction at mild potentials, along with guidelines for replicating this strategy in synthetic systems.


Subject(s)
Bicarbonates/chemistry , Carbon Dioxide/chemistry , Formate Dehydrogenases/metabolism , Catalysis , Electrochemical Techniques , Electrons , Models, Molecular , Molecular Structure , Oxidation-Reduction , Protons
6.
ChemSusChem ; 12(16): 3761-3768, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31170315

ABSTRACT

Multimolar CO2 concentrations are achieved in acetonitrile solutions containing supporting electrolyte at relatively mild CO2 pressures (<5 MPa) and ambient temperature. Such CO2 -rich, electrolyte-containing solutions are termed as CO2 -eXpanded Electrolytes (CXEs) because significant volumetric expansion of the liquid phase accompanies CO2 dissolution. Cathodic polarization of a model polycrystalline gold electrode-catalyst in CXE media enhances CO2 to CO conversion rates by up to an order of magnitude compared with those attainable at near-ambient pressures, without loss of selectivity. The observed catalytic process intensification stems primarily from markedly increased CO2 availability. However, a non-monotonic correlation between the dissolved CO2 concentration and catalytic activity is observed, with an optimum occurring at approximately 5 m CO2 concentration. At the highest applied CO2 pressures, catalysis is significantly attenuated despite higher CO2 concentrations and improved mass-transport characteristics, attributed in part to increased solution resistance. These results reveal that pressure-tunable CXE media can significantly intensify CO2 reduction rates over known electrocatalysts by alleviating substrate starvation, with CO2 pressure as a crucial variable for optimizing the efficiency of electrocatalytic CO2 conversion.

7.
Dev Dyn ; 237(10): 2862-73, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18816846

ABSTRACT

In Xenopus, the maternal transcription factor VegT is necessary and sufficient to initiate the expression of nodal-related genes, which are central to many aspects of early development. However, little is known about regulation of VegT activity. Using maternal loss-of-function experiments, we show that the maternal homeoprotein, Tgif1, antagonizes VegT and plays a central role in anteroposterior patterning by negatively regulating a subset of nodal-related genes. Depletion of Tgif1 causes the anteriorization of embryos and the up-regulation of nodal paralogues nr5 and nr6. Furthermore, Tgif1 inhibits activation of nr5 by VegT in a manner that requires a C-terminal Sin3 corepressor-interacting domain. Tgif1 has been implicated in the transcriptional corepression of transforming growth factor-beta (TGFbeta) and retinoid signaling. However, we show that Tgif1 does not inhibit these pathways in early development. These results identify an essential role for Tgif1 in the control of nodal expression and provide insight into Tgif1 function and mechanisms controlling VegT activity.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/metabolism , Mothers , Nodal Protein/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Xenopus laevis/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Female , Gene Deletion , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Humans , Molecular Sequence Data , Nodal Protein/genetics , RNA, Messenger/genetics , Retinoids/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Smad2 Protein/genetics , Smad2 Protein/metabolism , Xenopus Proteins/chemistry , Xenopus Proteins/deficiency , Xenopus Proteins/genetics , Xenopus laevis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...