Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 136(3): 288-298, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32350509

ABSTRACT

Natural killer (NK) cells are important in the immune defense against tumor cells and pathogens, and they regulate other immune cells by cytokine secretion. Although murine NK cell biology has been extensively studied, knowledge about transcriptional circuitries controlling human NK cell development and maturation is limited. By generating ETS1-deficient human embryonic stem cells and by expressing the dominant-negative ETS1 p27 isoform in cord blood hematopoietic progenitor cells, we show that the transcription factor ETS1 is critically required for human NK cell differentiation. Genome-wide transcriptome analysis determined by RNA-sequencing combined with chromatin immunoprecipitation-sequencing analysis reveals that human ETS1 directly induces expression of key transcription factors that control NK cell differentiation (ie, E4BP4, TXNIP, TBET, GATA3, HOBIT, BLIMP1). In addition, ETS1 regulates expression of genes involved in apoptosis and NK cell activation. Our study provides important molecular insights into the role of ETS1 as an important regulator of human NK cell development and terminal differentiation.


Subject(s)
Cell Differentiation/immunology , Gene Expression Regulation/immunology , Human Embryonic Stem Cells/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation , Proto-Oncogene Protein c-ets-1/immunology , Apoptosis/genetics , Apoptosis/immunology , Cell Differentiation/genetics , Cell Line , Gene Expression Profiling , Genome-Wide Association Study , Human Embryonic Stem Cells/cytology , Humans , Killer Cells, Natural/cytology , Protein Isoforms/genetics , Protein Isoforms/immunology , Proto-Oncogene Protein c-ets-1/genetics
2.
Blood ; 99(5): 1620-6, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11861276

ABSTRACT

The NOD-LtSZ scid/scid (NOD/SCID) repopulation assay is the criterion for the study of self-renewal and multilineage differentiation of human hematopoietic stem cells. An important shortcoming of this model is the reported absence of T-cell development. We studied this aspect of the model and investigated how it could be optimized to support T-cell development. Occasionally, low-grade thymic engraftment was observed in NOD/SCID mice or Rag2(-/-)gamma(c)(-/-) mice. In contrast, the treatment of NOD/SCID mice with a monoclonal antibody against the murine interleukin-2R beta, (IL-2R beta) known to decrease natural killer cell activity, resulted in human thymopoiesis in up to 60% of the mice. T-cell development was phenotypically normal and resulted in polyclonal, mature, and functional CD1(-) TCR alpha beta (+) CD4(+) or CD8(+) single-positive T cells. In mice with ongoing thymopoiesis, peripheral T cells were observed. TREC analysis showed that T cells with a naive phenotype (CD45RA(+)) emerged from the thymus. In approximately half of these mice, the peripheral T cells included a pauciclonal outgrowth of CD45RO(+) cells. These data suggest that all elements of a functional immune system were present in these animals.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Leukopoiesis/drug effects , T-Lymphocytes/cytology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacology , Antigens, CD34 , Cell Differentiation , Fetal Blood/cytology , Graft Survival/drug effects , Humans , Immunophenotyping , Mice , Mice, Inbred NOD , Mice, SCID , Models, Animal , Receptors, Interleukin-2/immunology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , Thymus Gland/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...