Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Cell Dev Biol ; 9: 647981, 2021.
Article in English | MEDLINE | ID: mdl-34277599

ABSTRACT

In development, differentiation from a pluripotent state results in global epigenetic changes, although the extent to which this occurs in induced pluripotent stem cell-based neuronal models has not been extensively characterized. In the present study, induced pluripotent stem cell colonies (33Qn1 line) were differentiated and collected at four time-points, with DNA methylation assessed using the Illumina Infinium Human Methylation EPIC BeadChip array. Dynamic changes in DNA methylation occurring during differentiation were investigated using a data-driven trajectory inference method. We identified a large number of Bonferroni-significant loci that showed progressive alterations in DNA methylation during neuronal differentiation. A gene-gene interaction network analysis identified 60 densely connected genes that were influential in the differentiation of neurons, with STAT3 being the gene with the highest connectivity.

2.
Autophagy ; 17(4): 855-871, 2021 04.
Article in English | MEDLINE | ID: mdl-32286126

ABSTRACT

Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) - the predominant neuronal sub-type afflicted in PD - have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells.Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4',6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco's modified eagle's medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin.


Subject(s)
Autophagy , Cell Culture Techniques , Dopaminergic Neurons/cytology , Induced Pluripotent Stem Cells/cytology , Mitophagy , Autophagy/drug effects , Autophagy/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/ultrastructure , Gene Expression Regulation/drug effects , Growth Cones/drug effects , Growth Cones/ultrastructure , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Mesencephalon/cytology , Mitochondria/drug effects , Mitochondria/metabolism , Mitophagy/drug effects , Mitophagy/genetics , Oxygen Consumption/drug effects , Oxygen Consumption/genetics , Pyridines/pharmacology , Pyrimidines/pharmacology , Time Factors
3.
Front Neurosci ; 12: 676, 2018.
Article in English | MEDLINE | ID: mdl-30323735

ABSTRACT

Alzheimer's disease is the most common form of dementia, it is estimated to affect over 40 million people worldwide. Classically, the disease has been characterized by the neuropathological hallmarks of aggregated extracellular amyloid-ß and intracellular paired helical filaments of hyperphosphorylated tau. A wealth of evidence indicates a pivotal role for the innate immune system, such as microglia, and inflammation in the pathology of Alzheimer's disease. The over production and aggregation of Alzheimer's associated proteins results in chronic inflammation and disrupts microglial clearance of these depositions. Despite being non-excitable, microglia express a diverse array of ion channels which shape their physiological functions. In support of this, there is a growing body of evidence pointing to the involvement of microglial ion channels contributing to neurodegenerative diseases such as Alzheimer's disease. In this review, we discuss the evidence for an array of microglia ion channels and their importance in modulating microglial homeostasis and how this process could be disrupted in Alzheimer's disease. One promising avenue for assessing the role that microglia play in the initiation and progression of Alzheimer's disease is through using induced pluripotent stem cell derived microglia. Here, we examine what is already understood in terms of the molecular underpinnings of inflammation in Alzheimer's disease, and the utility that inducible pluripotent stem cell derived microglia may have to advance this knowledge. We outline the variability that occurs between the use of animal and human models with regards to the importance of microglial ion channels in generating a relevant functional model of brain inflammation. Overcoming these hurdles will be pivotal in order to develop new drug targets and progress our understanding of the pathological mechanisms involved in Alzheimer's disease.

4.
Epigenomics ; 9(11): 1455-1468, 2017 11.
Article in English | MEDLINE | ID: mdl-28969469

ABSTRACT

It is thought that both genetic and epigenetic variation play a role in Alzheimer's disease initiation and progression. With the advent of somatic cell reprogramming into induced pluripotent stem cells it is now possible to generate patient-derived cells that are able to more accurately model and recapitulate disease. Furthermore, by combining this with recent advances in (epi)genome editing technologies, it is possible to begin to examine the functional consequence of previously nominated genetic variants and infer epigenetic causality from recently identified epigenetic variants. In this review, we explore the role of genetic and epigenetic variation in Alzheimer's disease and how the functional relevance of nominated loci can be investigated using induced pluripotent stem cells and (epi)genome editing techniques.


Subject(s)
Alzheimer Disease/genetics , Epigenesis, Genetic , Genetic Variation , Induced Pluripotent Stem Cells/metabolism , Alzheimer Disease/pathology , Humans , Induced Pluripotent Stem Cells/cytology
5.
Front Cell Neurosci ; 9: 372, 2015.
Article in English | MEDLINE | ID: mdl-26528126

ABSTRACT

Amyloidopathy involves the accumulation of insoluble amyloid ß (Aß) species in the brain's parenchyma and is a key histopathological hallmark of Alzheimer's disease (AD). Work on transgenic mice that overexpress Aß suggests that elevated Aß levels in the brain are associated with aberrant epileptiform activity and increased intrinsic excitability (IE) of CA1 hippocampal neurons. In this study we examined if similar changes could be observed in hippocampal CA1 pyramidal neurons from aged PDAPP mice (20-23 month old, Indiana mutation: V717F on APP gene) compared to their age-matched wild-type littermate controls. Whole-cell current clamp recordings revealed that sub-threshold intrinsic properties, such as input resistance, resting membrane potential and hyperpolarization activated "sag" were unaffected, but capacitance was significantly decreased in the transgenic animals. No differences between genotypes were observed in the overall number of action potentials (AP) elicited by 500 ms supra-threshold current stimuli. PDAPP neurons, however, exhibited higher instantaneous firing frequencies after accommodation in response to high intensity current injections. The AP waveform was narrower and shorter in amplitude in PDAPP mice: these changes, according to our in silico model of a CA1/3 pyramidal neuron, depended on the respective increase and reduction of K(+) and Na(+) voltage-gated channels maximal conductances. Finally, the after-hyperpolarization, seen after the first AP evoked by a +300 pA current injection and after 50 Hz AP bursts, was more pronounced in PDAPP mice. These data show that Aß-overexpression in aged mice altered the capacitance, the neuronal firing and the AP waveform of CA1 pyramidal neurons. Some of these findings are consistent with previous work on younger PDAPP; they also show important differences that can be potentially ascribed to the interaction between amyloidopathy and ageing. Such a change of IE properties over time underlies that the increased incidence of seizure observed in AD patients might rely on different mechanistic pathways during progression of the disease.

6.
Brain ; 136(Pt 12): 3753-65, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24271563

ABSTRACT

The neuroendocrine response to episodes of acute stress is crucial for survival whereas the prolonged response to chronic stress can be detrimental. Learning and memory are particularly susceptible to stress with cognitive deficits being well characterized consequences of chronic stress. Although there is good evidence that acute stress can enhance cognitive performance, the mechanism(s) for this are unclear. We find that hippocampal slices, either prepared from rats following 30 min restraint stress or directly exposed to glucocorticoids, exhibit an N-methyl-d-aspartic acid receptor-independent form of long-term potentiation. We demonstrate that the mechanism involves an NMDA receptor and PKA-dependent insertion of Ca2+ -permeable AMPA receptors into synapses. These then trigger the additional NMDA receptor-independent form of LTP during high frequency stimulation.


Subject(s)
Calcium/metabolism , Hippocampus/physiology , Long-Term Potentiation/physiology , Receptors, AMPA/metabolism , Restraint, Physical/physiology , Animals , Biotinylation , Dexamethasone/pharmacology , Electric Stimulation , Excitatory Amino Acid Antagonists/pharmacology , Gene Expression Regulation/drug effects , Glucocorticoids/pharmacology , Hippocampus/drug effects , Hormone Antagonists/pharmacology , In Vitro Techniques , Long-Term Potentiation/drug effects , Male , Mifepristone/pharmacology , Muscarinic Antagonists/pharmacology , Patch-Clamp Techniques , Phosphorylation/drug effects , Rats , Rats, Wistar , Valine/analogs & derivatives , Valine/pharmacology
7.
Stem Cell Res ; 11(3): 1206-21, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24013066

ABSTRACT

Basal forebrain cholinergic neurons (bfCNs) which provide innervation to the hippocampus and cortex, are required for memory and learning, and are primarily affected in Alzheimer's Disease (AD), resulting in related cognitive decline. Therefore generation of a source of bfCNs from human pluripotent stem cells (hPSCs) is crucial for in vitro disease modeling and development of novel AD therapies. In addition, for the advancement of regenerative approaches there is a requirement for an accurate developmental model to study the neurogenesis and survival of this population. Here we demonstrate the efficient production of bfCNs, using a novel embryoid body (EB) based non-adherent differentiation (NAdD) protocol. We establish a specific basal forebrain neural stem cell (NSC) phenotype via expression of the basal forebrain transcription factors NKX2.1 and LHX8, as well as the general forebrain marker FOXG1. We present evidence that this lineage is achieved via recapitulation of embryonic events, with induction of intrinsic hedgehog signaling, through the use of a 3D non-adherent differentiation system. This is the first example of hPSC-derived basal forebrain-like NSCs, which are scalable via self-renewal in prolonged culture. Furthermore upon terminal differentiation these basal forebrain-like NSCs generate high numbers of cholinergic neurons expressing the specific markers ChAT, VACht and ISL1. These hPSC-derived bfCNs possess characteristics that are crucial in a model to study AD related cholinergic neuronal loss in the basal forebrain. Examples are expression of the therapeutic target p75(NTR), the release of acetylcholine, and demonstration of a mature, and functional electrophysiological profile. In conclusion, this work provides a renewable source of human functional bfCNs applicable for studying AD specifically in the cholinergic system, and also provides a model of the key embryonic events in human bfCN development.


Subject(s)
Cell Differentiation , Cholinergic Neurons/cytology , Hedgehog Proteins/metabolism , Pluripotent Stem Cells/cytology , Prosencephalon/cytology , Signal Transduction , Acetylcholinesterase/metabolism , Animals , Brain/metabolism , Brain/pathology , Calcium/metabolism , Cell Line , Cell Lineage , Cholinergic Neurons/metabolism , Cholinergic Neurons/transplantation , Female , Humans , Pluripotent Stem Cells/metabolism , Rats , Rats, Inbred Lew , Transplantation, Heterologous
8.
Front Neurol ; 4: 9, 2013.
Article in English | MEDLINE | ID: mdl-23407382

ABSTRACT

Alzheimer's disease (AD) is increasingly referred to as a "synaptopathy." This moniker reflects the loss or damage of synapses that occurs as the disease progresses, which in turn produces functional degeneration of specific neuronal circuits and consequent aberrant activity in neural networks. Accumulating evidence supports the functional importance of the early-expression activity-regulated cytoskeletal (Arc) gene in regulating memory consolidation. Interestingly, AD patients express anomalously high levels of Arc protein. Arc physically associates with presenilin1, a pivotal protease for the generation of Amyloid ß (Aß) peptides. Arc expression itself is disrupted in the vicinity of Aß oligomers and plaques. Such alterations result in the interruption of neuronal network integration in vivo. It is not clear what the impacts of these alterations are on the functional neurophysiology of transgenic mouse models of AD-associated amyloidopathy. Our group and others have described alterations to neuronal excitability and thus intrinsic firing within these transgenic mice models. This brief review will emphasize the rising role of Arc and its involvement in neurophysiological alterations of current AD models.

9.
Nat Commun ; 3: 1134, 2012.
Article in English | MEDLINE | ID: mdl-23072804

ABSTRACT

Zinc is released into the synaptic cleft upon exocytotic stimuli, although the mechanism for its reuptake into neurons is unresolved. Here we show that the cellular prion protein enhances the uptake of zinc into neuronal cells. This prion-protein-mediated zinc influx requires the octapeptide repeats and amino-terminal polybasic region in the prion protein, but not its endocytosis. Selective antagonists of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors block the prion protein-mediated zinc uptake, and the prion protein co-immunoprecipitates with both GluA1 and GluA2 AMPA receptor subunits. Zinc-sensitive intracellular tyrosine phosphatase activity is decreased in cells expressing prion protein and increased in the brains of prion-protein-null mice, providing evidence of a physiological consequence of this process. Prion protein-mediated zinc uptake is ablated in cells expressing familial associated mutants of the protein and in prion-infected cells. These data suggest that alterations in the cellular prion protein-mediated zinc uptake may contribute to neurodegeneration in prion and other neurodegenerative diseases.


Subject(s)
Endocytosis , Neurons/metabolism , Prions/metabolism , Zinc/metabolism , Animals , Cell Line, Tumor , GPI-Linked Proteins/metabolism , Humans , Mice , Nerve Tissue Proteins/metabolism , Prion Diseases/metabolism , Prion Diseases/pathology , Prion Proteins , Prions/chemistry , Protein Subunits/metabolism , Protein Tyrosine Phosphatases/metabolism , Rats , Receptors, AMPA/metabolism , Transfection
10.
Front Mol Neurosci ; 5: 57, 2012.
Article in English | MEDLINE | ID: mdl-22586365

ABSTRACT

Neuronal calcium sensors (NCS) readily bind calcium and undergo conformational changes enabling them to interact and regulate specific target molecules. These interactions lead to dynamic alterations in protein trafficking that significantly impact upon synaptic function. Emerging evidence suggests that NCS and alterations in Ca(2+) mobilization modulate glutamate receptor trafficking, subsequently determining the expression of different forms of synaptic plasticity. In this review, we aim to discuss the functional relevance of NCS in protein trafficking and their emerging role in synaptic plasticity. Their significance within the concept of "translational neuroscience" will also be highlighted, by assessing their potential as key molecules in neurodegeneration.

11.
Nat Neurosci ; 14(5): 545-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21441921
12.
FASEB J ; 25(5): 1519-30, 2011 May.
Article in English | MEDLINE | ID: mdl-21248240

ABSTRACT

Oxidative stress induces neuronal apoptosis and is implicated in cerebral ischemia, head trauma, and age-related neurodegenerative diseases. An early step in this process is the loss of intracellular K(+) via K(+) channels, and evidence indicates that K(v)2.1 is of particular importance in this regard, being rapidly inserted into the plasma membrane in response to apoptotic stimuli. An additional feature of neuronal oxidative stress is the up-regulation of the inducible enzyme heme oxygenase-1 (HO-1), which catabolizes heme to generate biliverdin, Fe(2+), and carbon monoxide (CO). CO provides neuronal protection against stresses such as stroke and excitotoxicity, although the underlying mechanisms are not yet elucidated. Here, we demonstrate that CO reversibly inhibits K(v)2.1. Channel inhibition by CO involves reactive oxygen species and protein kinase G activity. Overexpression of K(v)2.1 in HEK293 cells increases their vulnerability to oxidant-induced apoptosis, and this is reversed by CO. In hippocampal neurons, CO selectively inhibits K(v)2.1, reverses the dramatic oxidant-induced increase in K(+) current density, and provides marked protection against oxidant-induced apoptosis. Our results provide a novel mechanism to account for the neuroprotective effects of CO against oxidative apoptosis, which has potential for therapeutic exploitation to provide neuronal protection in situations of oxidative stress.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Apoptosis/drug effects , Carbon Monoxide/pharmacology , Disulfides/pharmacology , Oxidants/pharmacology , Shab Potassium Channels/metabolism , 2,2'-Dipyridyl/pharmacology , Animals , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line , Electrophysiology , HEK293 Cells , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Rats , Rats, Wistar
13.
Neuroreport ; 19(8): 839-43, 2008 May 28.
Article in English | MEDLINE | ID: mdl-18463498

ABSTRACT

The Alzheimer's disease related peptide amyloid beta (Abeta) might have a physiological role in upregulating K channel currents in neurones. Earlier studies used the human form of Abeta1-40 on rat neurones. We sought to confirm our hypothesis by use of rat Abeta, which has no Alzheimer's association. In rat cerebellar granule neurones and HEK293 cells expressing Kv4.2 subunits, whole-cell patch clamp of K currents revealed that preincubation of cells with recombinant human or rat Abeta1-40 (10 nM for 24 h) significantly increased K channel current density. This was accompanied by increased mRNA levels for Kv4.2. These data indicate that rodent and human Abeta are effective in modulating K currents. The effectiveness of nonaggregating rat Abeta also strongly supports a physiological role for the peptide.


Subject(s)
Amyloid beta-Peptides/physiology , Ion Channel Gating/physiology , Neurons/physiology , Peptide Fragments/physiology , Potassium/physiology , Shal Potassium Channels/physiology , Amyloid beta-Peptides/pharmacology , Animals , Cell Line , Cerebellum/cytology , Humans , Kidney/cytology , Neurons/cytology , Neurons/drug effects , Patch-Clamp Techniques , Peptide Fragments/pharmacology , RNA, Messenger/metabolism , Rats , Recombinant Proteins , Shal Potassium Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...