Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Front Vet Sci ; 11: 1356259, 2024.
Article in English | MEDLINE | ID: mdl-38863450

ABSTRACT

Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.

2.
Front Vet Sci ; 11: 1322267, 2024.
Article in English | MEDLINE | ID: mdl-38515536

ABSTRACT

Mycoplasma bovis has recently been identified increasingly in dairy cows causing huge economic losses to the dairy industry. M. bovis is a causative agent for mastitis, pneumonia, endometritis, endocarditis, arthritis, otitis media, and many other clinical symptoms in cattle. However, some infected cows are asymptomatic or may not shed the pathogen for weeks to years. This characteristic of M. bovis, along with the lack of adequate testing and identification methods in many parts of the world until recently, has allowed the M. bovis to be largely undetected despite its increased prevalence in dairy farms. Due to growing levels of antimicrobial resistance among wild-type M. bovis isolates and lack of cell walls in mycoplasmas that enable them to be intrinsically resistant to beta-lactam antibiotics that are widely used in dairy farms, there is no effective treatment for M. bovis mastitis. Similarly, there is no commercially available effective vaccine for M. bovis mastitis. The major constraint to developing effective intervention tools is limited knowledge of the virulence factors and mechanisms of the pathogenesis of M. bovis mastitis. There is lack of quick and reliable diagnostic methods with high specificity and sensitivity for M. bovis. This review is a summary of the current state of knowledge of the virulence factors, pathogenesis, clinical manifestations, diagnosis, and control of M. bovis mastitis in dairy cows.

3.
Vaccine ; 42(6): 1247-1258, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38281900

ABSTRACT

Mastitis is an inflammation of the mammary gland commonly caused by bacteria or fungi. Staphylococcus aureus is a major bacterium that causes mastitis in dairy cows. Non-aureus staphylococci are also increasingly reported, with Staphylococcus chromogenes being the most common species. Current staphylococcal mastitis control programs are not fully effective, and treatment with antibiotics is not sustainable. Non-antibiotic sustainable control tools, such as effective vaccines, are critically needed. We previously developed S. aureus surface-associated proteins (SASP) and S. chromogenes surface-associated proteins (SCSP) vaccines that conferred partial protective effects. We hypothesized that vaccination with SASP or SCSP would reduce the incidence of S. aureus mastitis throughout the lactation period. The objective of this study was to evaluate the efficacy of SASP and SCSP vaccines against S. aureus and non-aureus staphylococcal mastitis under natural exposure over 300 days of lactation. Pregnant Holstein dairy cows (n = 45) were enrolled and assigned to receive SASP (n = 15) or SCSP (n = 16) vaccines or unvaccinated control (n = 14). Cows were vaccinated with 1.2 mg of SASP or SCSP with Emulsigen-D adjuvant. Control cows were injected with phosphate-buffered saline with Emulsigen-D adjuvant. Three vaccine injections were given subcutaneously at 60, 40, and 20 days before the expected calving. Booster vaccinations were given at 120 and 240 days in milk. Cows were monitored for mastitis at quarter and cow levels, staphylococcal mastitis incidence, changes in serum and milk anti-SASP and anti-SCSP antibody titers, bacterial counts in milk, adverse reactions, milk yield and milk somatic cells count over 300 days of lactation. The SCSP vaccine conferred a significant reduction in the incidence of staphylococcal mastitis. Milk and serum anti-SASP and anti-SCSP antibody titers were increased in the vaccinated cows compared to unvaccinated control cows. Anti-SASP and anti-SCSP antibody titers decreased at about 120 days in milk, indicating the duration of immunity of about four months. In conclusion, the SASP and SCSP vaccines conferred partial protection from natural infection.


Subject(s)
Mastitis, Bovine , Staphylococcal Infections , Staphylococcal Vaccines , Vaccines , Female , Pregnancy , Cattle , Animals , Humans , Staphylococcus aureus , Staphylococcal Infections/prevention & control , Staphylococcal Infections/veterinary , Milk , Lactation , Membrane Proteins
4.
Front Microbiol ; 14: 1283165, 2023.
Article in English | MEDLINE | ID: mdl-38029210

ABSTRACT

Introduction: The rise in extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in dairy cattle farms poses a risk to human health as they can spread to humans through the food chain, including raw milk. This study was designed to determine the status, antimicrobial resistance, and pathogenic potential of ESBL-producing -E. coli and -Klebsiella spp. isolates from bulk tank milk (BTM). Methods: Thirty-three BTM samples were collected from 17 dairy farms and screened for ESBL-E. coli and -Klebsiella spp. on CHROMagar ESBL plates. All isolates were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). Results: Ten presumptive ESBL-producing bacteria, eight E. coli, and two K. pneumoniae were isolated. The prevalence of ESBL-E. coli and -K. pneumoniae in BTM was 21.2% and 6.1%, respectively. ESBL-E. coli were detected in 41.2% of the study farms. Seven of the ESBL-E. coli isolates were multidrug resistant (MDR). The two ESBL-producing K. pneumoniae isolates were resistant to ceftriaxone. Seven ESBL-E. coli strains carry the blaCTX-M gene, and five of them co-harbored blaTEM-1. ESBL-E. coli co-harbored blaCTX-M with other resistance genes, including qnrB19, tet(A), aadA1, aph(3'')-Ib, aph(6)-Id), floR, sul2, and chromosomal mutations (gyrA, gyrB, parC, parE, and pmrB). Most E. coli resistance genes were associated with mobile genetic elements, mainly plasmids. Six sequence types (STs) of E. coli were detected. All ESBL-E. coli were predicted to be pathogenic to humans. Four STs (three ST10 and ST69) were high-risk clones of E. coli. Up to 40 virulence markers were detected in all E. coli isolates. One of the K. pneumoniae was ST867; the other was novel strain. K. pneumoniae isolates carried three types of beta-lactamase genes (blaCTX-M, blaTEM-1 and blaSHV). The novel K. pneumoniae ST also carried a novel IncFII(K) plasmid ST. Conclusion: Detection of high-risk clones of MDR ESBL-E. coli and ESBL-K. pneumoniae in BTM indicates that raw milk could be a reservoir of potentially zoonotic ESBL-E. coli and -K. pneumoniae.

5.
Antibiotics (Basel) ; 13(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38247585

ABSTRACT

Escherichia coli O157:H7, Salmonella and Staphylococcus aureus are common foodborne pathogens. We determined the prevalence of E. coli O157:H7 and Salmonella in feces and milk and the prevalence of S. aureus in milk from dairy cattle and camels in the Borana pastoral community in the Southern Oromia Region of Ethiopia. Paired individual cow composite (pooled from all quarters in equal proportions) milk and fecal samples were collected from cows (n = 154) and camels (n = 158). Samples were cultured on bacterial isolation and identification media. E. coli O157:H7 and Salmonella isolates were further tested for susceptibility against nine antimicrobial drugs. Different risk factors associated with hygienic milking practices were recorded and analyzed for their influence on the prevalence of these bacteria in milk and feces. The prevalence of E. coli O157:H7 and Salmonella in feces were 3.9% and 8.4%, respectively, in cows, and 0.6% and 2.5%, respectively, in camels. E. coli O157:H7 and Salmonella were detected in the composite milk samples of 2.6% and 3.9% of the cows, respectively, and 0% and 1.3% of the camels, respectively. S. aureus was detected in composite milk samples of 33.4% of the cows and 41.7% of the camels. All E. coli O157:H7 (n = 11) and Salmonella (n = 25) isolates from both animal species and sample types were resistant to at least one antimicrobial drug. Multidrug resistance was observed in 70% (7/10) of the E. coli O157:H7 fecal and milk isolates from cows and 33.3% (2/6) of the Salmonella fecal and milk isolates from camels. The prevalence of these bacteria in feces and milk was not affected by risk factors associated with milking practices. Given the very close contact between herders and their animals and the limited availability of water for hand washing and udder cleaning, these bacteria are most likely present in all niches in the community. Improving community awareness of the need to boil milk before consumption is a realistic public health approach to reducing the risk of these bacteria.

6.
Front Vet Sci ; 10: 1260433, 2023.
Article in English | MEDLINE | ID: mdl-38239744

ABSTRACT

Introduction: The extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, such as Escherichia coli, are emerging as a serious threat to global health due to their rapid spread and their multidrug-resistant (MDR) phenotypes. However, limited information is available regarding the prevalence and antimicrobial resistance (AMR) profile of ESBL-E. coli in the United States dairy farms. This study aimed to determine the prevalence and AMR pattern of ESBL-E. coli in East Tennessee dairy cattle farms. Methods: Rectal fecal samples from dairy cattle (n = 508) and manure (n = 30), water (n = 19), and feed samples (n = 15) were collected from 14 farms. The presumptive E. coli was isolated on CHROMagar™ ESBL and confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Antimicrobial susceptibility testing was performed on the ESBL-E. coli isolates. Results and discussion: From 572 fecal and farm environmental samples, a total of 233 (41%, n = 572) ESBL-E. coli were identified. The prevalence of fecal ESBL-E. coli was 47.5% (95% CI: 46.2-49.2). The within-farm prevalence of ESBL-E. coli ranged from 8 to 100%. Recent treatment history with third-generation cephalosporins (3GC), cow parity ≥3, and calves were the independent risk factors associated (P < 0.05) with fecal carriage of ESBL-E. coli. Overall, 99.6% (n = 231) ESBL-E. coli tested were phenotypically resistant to at least one of the 14 antimicrobial agents tested. The most common AMR phenotypes were against beta-lactam antibiotics, ampicillin (99.1%; n = 231 isolates), and ceftriaxone (98.7%, n = 231). Most ESBL-E. coli isolates (94.4%) were MDR (resistance to ≥3 antimicrobial classes), of which 42.6% showed co-resistance to at least six classes of antimicrobials. ESBL-E. coli isolates with concurrent resistance to ceftriaxone, ampicillin, streptomycin, tetracycline, sulfisoxazole, and chloramphenicol are widespread and detected in all the farms. The detection of MDR ESBL-E. coli suggests that dairy cattle can be a reservoir for these bacteria, highlighting the associated public health risk.

7.
Antibiotics (Basel) ; 11(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36289970

ABSTRACT

Antimicrobial resistance (AMR) is one of the top global health threats of the 21th century. Recent studies are increasingly reporting the rise in extended-spectrum beta-lactamases producing Enterobacteriaceae (ESBLs-Ent) in dairy cattle and humans in the USA. The causes of the increased prevalence of ESBLs-Ent infections in humans and commensal ESBLs-Ent in dairy cattle farms are mostly unknown. However, the extensive use of beta-lactam antibiotics, especially third-generation cephalosporins (3GCs) in dairy farms and human health, can be implicated as a major driver for the rise in ESBLs-Ent. The rise in ESBLs-Ent, particularly ESBLs-Escherichia coli and ESBLs-Klebsiella species in the USA dairy cattle is not only an animal health issue but also a serious public health concern. The ESBLs-E. coli and -Klebsiella spp. can be transmitted to humans through direct contact with carrier animals or indirectly through the food chain or via the environment. The USA Centers for Disease Control and Prevention reports also showed continuous increase in community-associated human infections caused by ESBLs-Ent. Some studies attributed the elevated prevalence of ESBLs-Ent infections in humans to the frequent use of 3GCs in dairy farms. However, the status of ESBLs-Ent in dairy cattle and their contribution to human infections caused by ESBLs-producing enteric bacteria in the USA is the subject of further study. The aims of this review are to give in-depth insights into the status of ESBL-Ent in the USA dairy farms and its implication for public health and to highlight some critical research gaps that need to be addressed.

8.
Curr Res Microb Sci ; 3: 100123, 2022.
Article in English | MEDLINE | ID: mdl-35909617

ABSTRACT

Bovine mycoplasmoses, which is mostly caused by Mycoplasma bovis, is a significant problem in the dairy and beef industry. Mycoplasmal mastitis has a global occurrence with notable effects in the United States and Europe. The pathogen was first detected in a mastitis case in California, United States, and regarded as major contagious mastitis. It is highly contagious and resistant to antibiotics and lack cell wall rendering certain group of antibiotics ineffective. Outbreaks mostly originate from introduction of diseased dairy cows to a farm and poor hygienic practices that help to maintain cow to cow transmission. Rapid detection scheme is needed to be in place in dairy farms to devise preventive measures and stop future outbreaks. However; early detection is hampered by the fastidious growth of M. bovis and the need for specialized equipment and reagents in laboratory settings. Intramammary Mycoplasma bovis infections cause elevation in milk somatic cell count which is one of the important factors to determine milk quality for grading and hence dictates milk price. There are multiple attributes of M. bovis regarded as virulence factors such as adhesion to and invasion into host cells, avoidance of phagocytosis, resistance to killing by the alternative complement system, biofilm formation, and hydrogen peroxide production. Nevertheless, there are still undetermined virulence factors that hamper the development of sustainable control tools such as effective vaccine. To date, most vaccine trials have failed, and there is no commercial M. bovis mastitis vaccine. Mycoplasma bovis has been shown to modulate both humoral and cellular immune response during bovine mastitis. In the future, research seeking new immunogenic and protective vaccine targets are highly recommended to control this important dairy cattle disease worldwide.

9.
Foodborne Pathog Dis ; 19(9): 598-612, 2022 09.
Article in English | MEDLINE | ID: mdl-35921067

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is one of the most common E. coli pathotypes reported to cause several outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen, and ruminants, especially cattle, are considered important reservoirs for the most common EHEC serotype, E. coli O157:H7. Humans are infected indirectly through the consumption of food (milk, meat, leafy vegetables, and fruits) and water contaminated by animal feces or direct contact with carrier animals or humans. E. coli O157:H7 is one of the most frequently reported causes of foodborne illnesses in developed countries. It employs two essential virulence mechanisms to trigger damage to the host. These are the development of attaching and effacing (AE) phenotypes on the intestinal mucosa of the host and the production of Shiga toxin (Stx) that causes hemorrhagic colitis and hemolytic uremic syndrome. The AE phenotype is controlled by the pathogenicity island, the locus of enterocyte effacement (LEE). The induction of both AE and Stx is under strict and highly complex regulatory mechanisms. Thus, a good understanding of these mechanisms, major proteins expressed, and environmental cues involved in the regulation of the expression of the virulence genes is vital to finding a method to control the colonization of reservoir hosts, especially cattle, and disease development in humans. This review is a concise account of the current state of knowledge of virulence gene regulation in the LEE-positive EHEC.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli O157 , Escherichia coli Proteins , Foodborne Diseases , Animals , Cattle , Enterohemorrhagic Escherichia coli/genetics , Escherichia coli Infections/veterinary , Escherichia coli O157/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Shiga Toxin , Virulence/genetics
10.
Foodborne Pathog Dis ; 19(6): 408-416, 2022 06.
Article in English | MEDLINE | ID: mdl-35451874

ABSTRACT

Antimicrobials have been widely used in dairy farms to prevent and control dairy cattle diseases since 1960s. This led to the emergence of antimicrobial resistant bacteria (ARB) that, along with their antimicrobial resistance genes (ARGs), can spread from dairy farms to humans. Therefore, regular antimicrobial resistance (AMR) monitoring is important to implement proper mitigation measures. The objective of this study was to determine the prevalence of AMR and extended-spectrum beta-lactamases (ESBLs)-producing Escherichia coli in dairy cattle. A cross-sectional study was conducted in four dairy cattle farms (A-D) in East Tennessee. A total of 80 samples consisting of 20 samples each of bulk tank milk, feces, dairy cattle manure-amended soil, and prairie soil adjacent to the farms were collected and cultured for the isolation of E. coli. Tetracycline (TETr)-, third-generation cephalosporin (TGCr)- and nalidixic acid (NALr)-resistant E. coli (n = 88) were isolated and identified on agar media supplemented with TET, cefotaxime, and NAL, respectively. TGCr E. coli were tested for ESBLs and other coselected ARGs. TETr (74%, n = 88) was the most common, followed by TGCr (20%) and NALr (8%). Farms had significant (p < 0.001) differences: the highest prevalence of TGCr (55%) and TETr (100%) were observed in farm D, while all NALr isolates were from farm C. Over 83% of TGCr isolates (n = 18) harbored ESBL gene blaCTX-M. Majority (78%) of the E. coli isolates were multidrug-resistant (MDR), being positive for beta-lactams (blaCTX-M), TETs tet(A), tet(B), tet(M)), sulfonamides (sul2), aminoglycosides (strA), and phenicols (floR). This study indicated the widespread occurrence of MDR ESBLs-E. coli in dairy cattle farms. AMR surveillance of more dairy farms and identification of farm-level risk factors are important to mitigate the occurrence and spread of ARB of significant public health importance, such as ESBLs-E. coli.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Escherichia coli Infections , Escherichia coli , Animals , Anti-Bacterial Agents/pharmacology , Cattle/microbiology , Cross-Sectional Studies , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Farms , Prevalence , Soil , Tennessee/epidemiology , beta-Lactamases/genetics
11.
Vaccines (Basel) ; 9(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34451993

ABSTRACT

There is no effective vaccine against Streptococcus uberis mastitis in dairy cows. Objectives of this study were (1) to extract S. uberis surface proteins (SUSP) and determine immunoreactivity in vitro and (2) immunogenicity and efficacy in vivo. SUSP was extracted from S. uberis, and their immunoreactivity was tested by western blot. In total, 26 Jersey dairy cows were randomly divided into four groups. Groups 1, 2, and 3 were vaccinated subcutaneously with 4 mg, 1 mg, and 100 µg of SUSP, respectively, with Freund's incomplete adjuvant. Group 4 (control) was injected with placebo. S. uberis UT888 was infused into two contralateral quarters of each cow during early lactation. Somatic cell count (SCC), bacteria count in milk, and mastitis were monitored. Our results show that SUSP contains multiple protein bands, that ranged from 10 to 100 kDa. All vaccinates showed an increased anti-SUSP IgG antibody. The SCC of all experimentally infected quarters increased after challenge but slightly decreased after day 3 with no significant difference among groups. Milk bacterial count was significantly (p < 0.05) reduced in high and medium doses vaccinated groups than low and control groups. In conclusion, SUSP vaccine is immunogenic and showed a promising efficacy to control bovine S. uberis mastitis.

12.
Animals (Basel) ; 11(6)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073967

ABSTRACT

A study was carried out from August 2017 to February 2018 on lactating dairy cows, one-humped dromedary camels, and goats to determine mastitis in the Bule Hora and Dugda Dawa districts of in Southern Ethiopia. Milk samples from 564 udder quarters and udder halves from 171 animals consisting of 60 dairy cows, 51 camels, and 60 goats were tested for mastitis. Sixty-four positive udder milk samples were cultured, and bacterial mastitis pathogens were isolated and identified. The antibiotic resistance of bacterial isolates from milk with mastitis was tested against nine antimicrobials commonly used in the study area. Cow- and quarter-level prevalence of mastitis in dairy cows, camels, and goats was 33.3%, 26.3%, and 25% and 17.6%, 14.5%, and 20%, respectively. In cattle, the prevalence was significantly higher in Dugda Dawa than in Bule Hora. Major bacterial isolates were coagulase-negative Staphylococcus species (39.1%), S. aureus (17.2%), S. hyicus (14.1%), and S. intermedius and Escherichia coli (9.4% each). In camels, udder abnormality and mastitis were significantly higher in late lactation than in early lactation. Mastitis tends to increase with parity in camels. E. coli isolates were highly resistant to spectinomycin, vancomycin, and doxycycline, whereas most S. aureus isolates were multidrug-resistant. Most of the rural and periurban communities in this area consume raw milk, which indicates a high risk of infection with multidrug-resistant bacteria. We recommend a community-focused training program to improve community awareness of the need to boil milk and the risk of raw milk consumption.

13.
Animals (Basel) ; 11(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430135

ABSTRACT

Mastitis is the most prevalent and economically important disease caused by different etiological agents, which leads to increased somatic cell count (SCC) and low milk quality. Treating mastitis cases with antimicrobials is essential to reduce SCC and improve milk quality. Non-prudent use of antimicrobials in dairy farms increased the development of antimicrobial resistant bacteria. This study's objectives were (1) to isolate and identify etiological agents of mastitis and (2) to determine antimicrobial resistance profiles of bacterial isolates. A total of 174 quarter milk samples from 151 cows with high SCC and clinical mastitis from 34 dairy farms in Tennessee, Kentucky, and Mississippi were collected. Bacterial causative agents were determined by bacteriological and biochemical tests. The antimicrobial resistance of bacterial isolates against 10 commonly used antimicrobials was tested. A total of 193 bacteria consisting of six bacterial species, which include Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Escherichia coli, Klebsiella oxytoca and Klebsiella pneumoniae were isolated. Staphylococcus aureus was the predominant isolate followed by Strep. spp., E. coli, and Klebsiella spp. Results of this study showed that Gram-negatives (E. coli and Klebsiella spp.) were more resistant than Gram-positives (Staph. aureus and Streptococcus spp.). Continuous antimicrobial resistance testing and identification of reservoirs of resistance traits in dairy farms are essential to implement proper mitigation measures.

14.
Animals (Basel) ; 10(5)2020 Apr 25.
Article in English | MEDLINE | ID: mdl-32344845

ABSTRACT

Mastitis is inflammation of mammary glands usually caused by bacteria such as Staphylococcus aureus. Dairy cows are susceptible to mastitis during early dry and transition periods. Effective vaccine is needed during these periods. One of the limitations to develop an effective vaccine against S. aureus is the absence of good infection model. Intramammary infusion (IMIF) with S. aureus has been used as an infection model to test vaccine efficacy. IMIF is reliable in causing mastitis, but it bypasses physical barriers, non-specific natural defenses, and immunity in the teat canal. IMIF also transfers a large number of bacteria into the intramammary area at once. The objective of this study was to develop S. aureus IMIF model that mimics natural infection. Eight Holstein dairy cows were randomly divided into two groups of experimental (n = 5) and control (n = 3) cows. All teats of experimental cows were dipped in S. aureus culture suspension, whereas that of control cows were dipped in phosphate-buffered saline. Results showed that four of five cows were infected with challenge strain by day 3 of the challenge. The remaining cow was infected with Staphylococcus chromogenes. In conclusion, an experimental S. aureus intramammary infection can be induced by teat dipping into bacterial suspension.

15.
Microb Pathog ; 144: 104171, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32224210

ABSTRACT

Staphylococcus aureus is one of the major bacterial mastitis pathogens with significant effects on animal and human health. Some studies showed that S. aureus strains that infect different host species are genetically distinct, although most strains can infect a wide range of host species. However, there are no clearly defined clonal patterns of S. aureus strains that are known to infect a specific host. The objectives of this study were to evaluate the clonal diversity and virulence characteristics of S. aureus isolates from cases of bovine mastitis. Bacteriological tests were conducted on milk samples from cases of bovine mastitis from 11 dairy farms including some milk samples from unknown farms in Eastern Tennessee. Overall, a total of 111 S. aureus were isolated and identified, and further evaluated for their genetic diversity by pulsed-field gel electrophoresis (PFGE) and virulence characteristics by PCR. Genotypic virulence factors including staphylococcal enterotoxins, and toxic shock syndrome toxin 1 (tsst-1) were tested by PCR. In addition, the association among several known virulence factors of these isolates based on our current and previous studies in our lab were evaluated. Previously generated data that were included in the analysis of association among virulence factors were the presence of biofilm production associated genes in the ica operon such as icaA, icaD and icaAB, and phenotypic virulence characteristics such as hemolysis on blood agar, slime production and resistance or susceptibility to ten commonly used antimicrobials in dairy farms. The PFGE results showed the presence of 16 PFGE types (designated A - P) throughout farms, of which three pulsotypes, I, M and O were the most frequently isolated PFGE types from most farms. The PFGE type M was the most prevalent of all 16 PFGE types, with 64 isolates being present among nine farms. The PCR results of enterotoxin genes showed that out of the total 111 tested 84 (75.7%) were negative whereas 13 (11.7%), 2 (1.8%), 3 (2.7%), 1 (0.9%) and 8 (7.2%) were positive for seb, seb and sec, sec, see, and tsst-1, respectively. All 111 isolates were negative for sea and sej. Results of the evaluation of I, M and O strains adhesion to and invasion into mammary epithelial cells showed that the total count of each strain of bacteria adhered to and invaded into mammary epithelial cell line (MAC-T cells) was not significantly different (P > 0.05). This may be an indication that there is no significant difference in their ability to establish early host-pathogen interaction and colonization of the host. There were no statistically significant associations among PFGE types and other known virulence factors of these strains. However, PFGE types O and M tend to cluster with ß-hemolysin, absence of enterotoxins and susceptibility to antimicrobials. In conclusion, there was not any association between pulsotype and genotypic and phenotypic virulence factors. S. aureus isolates from cases of bovine mastitis had diverse genotypes that possessed variable virulence factors.


Subject(s)
Bacterial Toxins/genetics , Enterotoxins/genetics , Mastitis, Bovine/microbiology , Staphylococcal Infections/veterinary , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Superantigens/genetics , Virulence Factors/genetics , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion/genetics , Biofilms/growth & development , Cattle , Cell Line , Drug Resistance, Bacterial/genetics , Electrophoresis, Gel, Pulsed-Field , Epithelial Cells/microbiology , Genetic Variation/genetics , Microbial Sensitivity Tests , Milk/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification
16.
Heliyon ; 5(10): e02528, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31687478

ABSTRACT

Staphylococcus aureus is the major contagious bovine mastitis pathogen and has no effective vaccine. Strain variation and limited knowledge of common immunogenic antigen/s are among major constraints for developing effective vaccines. S. aureus cell surface proteins that are exposed to the host immune system constitute good vaccine candidates. The objective of this study was to compare two novel S. aureus surface protein extraction methods with biotinylation method and evaluate immune-reactivity of extracted proteins. Surface proteins were extracted from nine genetically distinct S. aureus strains from cases of bovine mastitis. After extraction, bacterial cell integrity was examined by Gram staining and electron microscopy to determine if extraction methods caused damage to cells that may release non-surface proteins. The extracted proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and evaluated for immune-reactivity using western blot. Results showed that all three extraction methods provided multiple protein bands on SDS-PAGE. Western blot result showed several immunoreactive surface proteins, in which some proteins strongly (well-resolved, thick, dark, and intense band) reacted across the nine strains tested. The three methods are valid for the extraction of surface proteins and hexadecane, and cholic acid methods are more feasible than biotinylation since both are easier, cheaper, and have minor effects on the bacterial cell. Strongly immune-reactive surface proteins may serve as potential candidates for a vaccine to control S. aureus mastitis in dairy cows.

17.
Foodborne Pathog Dis ; 15(7): 449-458, 2018 07.
Article in English | MEDLINE | ID: mdl-29394099

ABSTRACT

Staphylococcus aureus is a frequent and major contagious mastitis bacterial pathogen. The antibiotic treatment cure rates vary considerably from 4% to 92%. Staphylococcus aureus readily becomes resistant to antibiotics, resulting in persistent noncurable intramammary infection that usually results in culling of infected animals. Because of its notorious ability to acquire resistance to the commonly used as well as last resort antimicrobials such as methicillin and vancomycin and the development of multidrug-resistant strains, antimicrobial resistance (AMR) in S. aureus is of paramount importance in human medicine. The objective of this study was to evaluate the prevalence of AMR and genetic diversity of S. aureus isolates from milk of dairy cattle. Staphylococcus aureus isolates (n = 239) from 33 dairy farms in Tennessee were tested against 10 antimicrobials by broth microdilution method using the Sensititer system. Genetic diversity of resistant isolates was evaluated by pulsed-field gel electrophoresis (PFGE). Overall, AMR of the S. aureus isolates varied from as low as 1.3% for ceftiofur to as high as 25% for sulfadimethoxine. Out of 239 S. aureus isolates, 82 (34.3%) of them were resistant to at least 1 of the 10 antimicrobials. The AMR isolates belonged to two major PFGE types, indicating the presence of dominant clonal patterns among the resistant isolates. In general, there was a variation of prevalence of AMR within and among farms over time, with an increasing trend in tetracycline resistance. Judicious use of antimicrobials in dairy cattle farms can reduce the development of antimicrobial-resistant S. aureus.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Bacterial , Genetic Variation , Milk/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Animals , Cattle , Dairying , Electrophoresis, Gel, Pulsed-Field/veterinary , Female , Methicillin/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/epidemiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Tennessee/epidemiology
19.
Vet Immunol Immunopathol ; 190: 45-52, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28778322

ABSTRACT

Mastitis, an inflammation of the mammary gland, costs the dairy industry billions of dollars in lost revenues annually. The prevalence and costs associated with mastitis has made genetic selection methods a target for research. Previous research has identified amino acid changes at positions 122, 207, 245, 327, and 332 in the IL8 receptor, CXCR1, that result in three dominant amino acid haplotypes: VWHKH, VWHRR, and AWQRR. We hypothesize different haplotype combinations influence a cow's resistance, strength, and duration of response to mastitis. To test this, Holstein dairy cows (n=40) were intramammarily challenged with Streptococcus uberis within 3 d post-calving. All cows developed mastitis based on isolation of S. uberis from the challenged quarter at least twice. All cows with the VWHRR x VWHRR (n=5) and AWQRR x VWHRR (n=6) haplotype combinations required antibiotic therapy due to clinical signs of mastitis and tended (P=0.08) to be different from cows with a VWHRR x VWHKH (n=6) haplotype combination where only 33.3% required antibiotic therapy. Cows with a VWHRR homozygous haplotype combination displayed significantly higher responses to challenge indicated by elevated S. uberis counts (4340±5,521.9CFU/mL; P=0.01), mammary scores (1.1±0.18; P=0.03), milk scores (0.9±0.17; P=0.002), and SCC (1,010,832±489,993cells/mL; P=0.03). Contrastingly, AWQRR x VWHRR cows had significantly lower S. uberis counts (15.3±16.46CFU/mL; P=0.01), mammary scores (0.3±0.16; P=0.03), milk scores (0±0.15; P=0.002), and SCC (239,261±92,264.3cells/mL; P=0.03). Cows of the VWHKH x VWHRR haplotype combination displayed responses to challenge statistically comparable to other haplotype combinations, but appeared to have an earlier peak in SCC in comparison to all other haplotype combinations. Haplotype combination did not influence milk yield (P=0.6). Our results suggest using combinations of the SNPs within the CXCR1 gene gives a better indication of a cow's ability to combat S. uberis mastitis and could resolve prior studies' conflicting results focusing on individual SNP.


Subject(s)
Mastitis, Bovine/genetics , Receptors, Interleukin-8A/genetics , Streptococcal Infections/veterinary , Animals , Cattle/genetics , Cattle/immunology , Female , Haplotypes/genetics , Mastitis, Bovine/immunology , Mastitis, Bovine/microbiology , Polymorphism, Single Nucleotide/genetics , Receptors, Interleukin-8A/physiology , Severity of Illness Index , Streptococcal Infections/genetics , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcus/immunology
20.
Vet Res ; 46: 133, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26582308

ABSTRACT

In the present study, the effect of anti-recombinant Streptococcus uberis adhesion molecule (SUAM) antibodies against S. uberis intramammary infections (IMI) was evaluated using a passive protection model. Mammary quarters of healthy cows were infused with S. uberis UT888 opsonized with affinity purified anti-rSUAM antibodies or hyperimmune sera. Non-opsonized S. uberis UT888 were used as a control. Mammary quarters infused with opsonized S. uberis showed mild-to undetectable clinical symptoms of mastitis, lower milk bacterial counts, and less infected mammary quarters as compared to mammary quarters infused with non-opsonized S. uberis. These findings suggest that anti-rSUAM antibodies interfered with infection of mammary gland by S. uberis which might be through preventing adherence to and internalization into mammary gland cells, thus facilitating clearance of S. uberis, reducing colonization, and causing less IMI.


Subject(s)
Antibodies, Bacterial/blood , Mammary Glands, Animal/immunology , Mastitis, Bovine/microbiology , Mastitis, Bovine/therapy , Streptococcal Vaccines/therapeutic use , Streptococcus/immunology , Animals , Antibodies, Bacterial/metabolism , Antigens, Bacterial/immunology , Cattle , Female , Mammary Glands, Animal/microbiology , Mastitis, Bovine/immunology , Vaccines, Synthetic/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...