Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 32(44): e2004690, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32969083

ABSTRACT

Microporous zeolites have proven to be of great importance in many chemical processes. Yet, they often suffer from diffusion limitations causing inefficient use of the available catalytically active sites. To address this problem, hierarchical zeolites have been developed, which extensively improve the catalytic performance. There is a multitude of recent literature describing synthesis of and catalysis with these hierarchical zeolites. This review attempts to organize and overview this literature (of the last 5 years), with emphasis on the most important advances with regard to synthesis and application of such zeolites. Special attention is paid to the most common and important 10- and 12-membered ring zeolites (MTT, TON, FER, MFI, MOR, FAU, and *BEA). In contrast to previous reviews, the research per zeolite topology is brought together and discussed here. This allows the reader to instantly find the best synthesis method in accordance to the desired zeolite properties. A summarizing graph is made available to enable the reader to select suitable synthesis procedures based on zeolite acidity and mesoporosity, the two most important tunable properties.

2.
Bioresour Technol ; 244(Pt 1): 234-242, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28779676

ABSTRACT

The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed.


Subject(s)
Biofuels , Cocos , Ethanol , Fermentation , Hypergravity , Saccharomyces cerevisiae
SELECTION OF CITATIONS
SEARCH DETAIL
...