Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 151, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240861

ABSTRACT

Mushrooms are an important source of protein in the human diet. They are increasingly viewed as a sustainable meat replacement in an era of growing populations, with button mushrooms (Agaricus bisporus) the most popular and economically important mushroom in Europe, Australia and North America. Button mushrooms are cultivated on a defined, straw-derived compost, and the nitrogen (N) required to grow these high-protein foods is provided mainly by the addition of poultry manure and horse manure. Using the correct balance of carbon (C) and N sources to produce mushroom compost is critically important in achieving maximum mushroom yields. Changes in the amount and form of N added, the rate and timing of N addition and the other compost components used can dramatically change the proportion of added N recovered in the mushroom caps, the yield and quality of the mushrooms and the loss of N as ammonia and nitrogen oxide gases during composting. This review examines how N supply for mushroom production can be optimised by the use of a broad range of inorganic and organic N sources for mushroom composting, together with the use of recycled compost leachate, gypsum and protein-rich supplements. Integrating this knowledge into our current molecular understanding of mushroom compost biology will provide a pathway for the development of sustainable solutions in mushroom production that will contribute strongly to the circular economy. KEY POINTS: • Nitrogen for production of mushroom compost can be provided as a much wider range of organic feedstocks or inorganic compounds than currently used • Most of the nitrogen used in production of mushroom compost is not recovered as protein in the mushroom crop • The sustainability of mushroom cropping would be increased through alternative nitrogen management during composting and cropping.


Subject(s)
Agaricus , Composting , Animals , Horses , Humans , Manure , Nitrogen/metabolism , Ammonia , Poultry , Soil
2.
Environ Microbiol ; 26(2): e16567, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38233213

ABSTRACT

Soluble di-iron monooxygenase (SDIMO) enzymes enable insertion of oxygen into diverse substrates and play significant roles in biogeochemistry, bioremediation and biocatalysis. An unusual SDIMO was detected in an earlier study in the genome of the soil organism Solimonas soli, but was not characterized. Here, we show that the S. soli SDIMO is part of a new clade, which we define as 'Group 7'; these share a conserved gene organization with alkene monooxygenases but have only low amino acid identity. The S. soli genes (named zmoABCD) could be functionally expressed in Pseudomonas putida KT2440 but not in Escherichia coli TOP10. The recombinants made epoxides from C2 C8 alkenes, preferring small linear alkenes (e.g. propene), but also epoxidating branched, carboxylated and chlorinated substrates. Enzymatic epoxidation of acrylic acid was observed for the first time. ZmoABCD oxidised the organochlorine pollutants vinyl chloride (VC) and cis-1,2-dichloroethene (cDCE), with the release of inorganic chloride from VC but not cDCE. The original host bacterium S. soli could not grow on any alkenes tested but grew well on phenol and n-octane. Further work is needed to link ZmoABCD and the other Group 7 SDIMOs to specific physiological and ecological roles.


Subject(s)
Gammaproteobacteria , Pseudomonas putida , Vinyl Chloride , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Alkenes/metabolism , Gammaproteobacteria/metabolism , Biodegradation, Environmental , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
3.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36626759

ABSTRACT

The cultivated edible mushrooms Agaricus bisporus and Pleurotus ostreatus are valuable food crops and an important source of human nutrition. Agaricus bisporus is the dominant cultivated species in the western hemisphere and in Australia, while in Asian countries P. ostreatus is more prevalent. These two mushroom species are grown on fermented-pasteurized substrates, and bacteria and fungi play an important role in converting feedstocks into a selective medium for the mushroom mycelium. The mushrooms are usually introduced to the substrate as grain spawn, and the actively growing hyphae form a range of direct interactions with the diverse bacterial community in the substrate. Of these interactions, the most well studied is the removal of inhibitory volatile C8 compounds and ethylene by pseudomonads, which promotes mycelium growth and stimulates primordia formation of both A. bisporus and P. ostreatus. Bacterial biomass in the substrate is a significant nutrition source for the A. bisporus mycelium, both directly through bacteriolytic enzymes produced by A. bisporus, and indirectly through the action of extracellular bacterial enzymes, but this is less well studied for P. ostreatus. Apart from their role as a food source for the growing mycelium, bacteria also form extensive interactions with the mycelium of A. bisporus and P. ostreatus, by means other than those of the removal of inhibitory compounds. Although several of these interactions have been observed to promote mycelial growth, the proposed mechanisms of growth promotion by specific bacterial strains remain largely uncertain, and at times conflicting. Bacterial interactions also elicit varying growth-inhibitory responses from A. bisporus and P. ostreatus. This review explores characterized interactions involving bacteria and A. bisporus, and to a lesser degree P.ostreatus, and whilst doing so identifies existing research gaps and emphasizes directions for future work.


Subject(s)
Agaricus , Pleurotus , Humans , Pleurotus/chemistry , Agaricus/chemistry , Bacteria , Mycelium
4.
J Fungi (Basel) ; 8(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35448572

ABSTRACT

The Chytridiomycota phylum contributes to nutrient cycling and the flow of energy between trophic levels in terrestrial and aquatic ecosystems yet remains poorly described or absent from publications discussing fungal communities in these environments. This study contributes to the understanding of three species of soil chytrids in vitro-Gaertneriomyces semiglobifer, Spizellomyces sp. and Rhizophlyctis rosea-in the presence of elevated concentrations of nitrogen and phosphorus and with different sources of nitrogen. Colony growth was measured after 4 weeks as dry weight and total protein. To determine the impacts on zoospore reproduction, motility, lipid content, and attachment to organic substrates, 4- and 8-week incubation times were investigated. Whilst all isolates were able to assimilate ammonium as a sole source of nitrogen, nitrate was less preferred or even unsuitable as a nutrient source for G. semiglobifer and R. rosea, respectively. Increasing phosphate concentrations led to diverse responses between isolates. Zoospore production was also variable between isolates, and the parameters for zoospore motility appeared only to be influenced by the phosphate concentration for Spizellomyces sp. and R. rosea. Attachment rates increased for G. semiglobifer in the absence of an inorganic nitrogen source. These findings highlight variability between the adaptive responses utilised by chytrids to persist in a range of environments and provide new techniques to study soil chytrid biomass and zoospore motility by total protein quantification and fluorescent imaging respectively.

5.
ISME Commun ; 2(1): 88, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-37938292

ABSTRACT

Button mushrooms (Agaricus bisporus) are grown commercially on a specialized substrate that is usually prepared from wheat straw and poultry manure in a microbially-mediated composting process. The quality and yield of the mushroom crop depends critically on the quality of this composted substrate, but details of the microbial community responsible for compost production have only emerged recently. Here we report a detailed study of microbial succession during mushroom compost production (wetting, thermophilic, pasteurization/conditioning, spawn run). The wetting and thermophilic phases were characterized by a rapid succession of bacterial and fungal communities, with maximum diversity at the high heat stage. Pasteurization/conditioning selected for a more stable community dominated by the thermophilic actinomycete Mycothermus thermophilus and a range of bacterial taxa including Pseudoxanthomonas taiwanensis and other Proteobacteria. These taxa decreased during spawn run and may be acting as a direct source of nutrition for the proliferating Agaricus mycelium, which has previously been shown to use microbial biomass in the compost for growth. Comparison of bacterial communities at five geographically separated composting yards in south-eastern Australia revealed similarities in microbial succession during composting, although the dominant bacterial taxa varied among sites. This suggests that specific microbial taxa or combinations of taxa may provide useful biomarkers of compost quality and may be applied as predictive markers of mushroom crop yield and quality.

6.
Mycorrhiza ; 29(4): 351-362, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31044298

ABSTRACT

Interactions between bacteria and arbuscular mycorrhizal (AM) fungi play a significant role in mediating organic phosphorus (P) transformations and turnover in soil. The bacterial community in soil is largely responsible for mobilization of the soil organic P pool, and the released P is taken up by extraradical AM hyphae, which mediate its use for plant growth. However, the functional microbiome involved in organic P mineralization in the hyphosphere remains poorly understood. The aim of this study was to determine how AM hyphae-associated bacterial communities related to P turnover in the hyphosphere of leek (Allium porrum) respond to different forms of soil P. Using a compartmented microcosm, leek was grown with the AM fungus Funneliformis mosseae, and the extraradical mycelium of F. mosseae was allowed to grow into a separate hyphal compartment containing either no added P, or P as KH2PO4 or phytin. High-throughput sequencing showed that the alkaline phosphatase (ALP)-harboring bacterial community associated with the AM hyphae was dominated by Sinorhizobium, Bradyrhizobium, Pseudomonas, and Ralstonia and was significantly changed in response to different P treatments, with Pseudomonas showing higher relative abundance in organic P treatments than in control and inorganic P treatments. Pseudomonas was also the major genus harboring the ß-propeller phytase (BPP) gene in the hyphosphere, but the BPP-harboring community structure was not affected by the presence of different P forms. These results demonstrate the profound differences in ALP- and BPP-harboring bacterial communities in the hyphosphere at bacterial genus level, providing new insights to link bacteria and biogeochemical P cycling driven in association with mycorrhizal hyphae.


Subject(s)
Bacteria/metabolism , Phosphorus/metabolism , Soil Microbiology , Bacteria/classification , Bacteria/isolation & purification , Glomeromycota/growth & development , Glomeromycota/metabolism , Hyphae/growth & development , Hyphae/metabolism , Mycorrhizae/growth & development , Mycorrhizae/metabolism , Phosphorus/analysis , Soil/chemistry
7.
Appl Microbiol Biotechnol ; 103(14): 5831-5841, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31115628

ABSTRACT

In coffee-producing countries, waste products from coffee production are useful substrates for cultivation of Pleurotus ostreatus. This species is relatively easy to grow, coffee waste substrates are readily available and the mushroom fruiting bodies are a valuable source of nutrition and income. In developed countries, cultivation of P. ostreatus on spent coffee grounds (SCG) from coffee consumption is a novel way to recycle this urban waste product. Here, we studied the effect of SCG and caffeine on growth of a commercial strain of P. ostreatus in liquid and solid cultures, and on a commercial scale. The presence of caffeine inhibited mycelial growth on agar and in liquid culture in the laboratory. Increased levels of SCG in an SCG/sawdust substrate also delayed mycelial growth and delayed or prevented fruiting during commercial cultivation. Despite growth inhibition, partial degradation of caffeine to xanthine by P. ostreatus mycelium was observed in all SCG-containing substrate mixtures. Degradation of caffeine proceeded mainly via sequential N-demethylation to theophylline (1,3-dimethylxanthine) and 3-methylxanthine, although both paraxanthine and theobromine also accumulated in the substrate. Caffeine and its demethylated metabolites were also detected in fruiting bodies, but it was not clear whether caffeine metabolism occurred in the fruiting bodies themselves or whether caffeine metabolites were translocated there from the mycelium. Based on the caffeine concentrations measured in fruiting bodies after growth with SCG, it would be necessary to consume ~ 250 kg of fresh oyster mushrooms to obtain the amount of caffeine equivalent to one cup of espresso coffee, suggesting that the health impact of caffeine in these mushrooms is low. However, the ability of P. ostreatus to degrade caffeine indicates that this and other species in this genus may have potential applications in detoxification of coffee production wastes.


Subject(s)
Caffeine/metabolism , Pleurotus/growth & development , Pleurotus/metabolism , Waste Products/analysis , Coffee/chemistry , Culture Media/chemistry , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/metabolism , Industrial Microbiology , Industrial Waste/analysis , Mycelium/growth & development , Mycelium/metabolism , Xanthine/metabolism
8.
Appl Microbiol Biotechnol ; 102(12): 5335-5342, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29696332

ABSTRACT

Mushrooms are an important food crop throughout the world. The most important edible mushroom is the button mushroom (Agaricus bisporus), which comprises about 30% of the global mushroom market. This species is cultivated commercially on a selective compost that is produced predominantly from wheat straw/stable bedding and chicken manure, at a moisture content of around 70% (w/w) and temperatures of up to 80 °C. Large volumes of water are required to achieve this moisture content, and many producers therefore collect leachate from the composting windrows and bunkers (known in the industry as "goody water") and reuse it to wet the raw ingredients. This has the benefit of recycling and saving water and has the potential to enrich beneficial microorganisms that stimulate composting, but also the risk of enhancing pathogen populations that could reduce productivity. Here, we show by 16S rRNA gene sequencing that mushroom compost leachate contains a high diversity of unknown microbes, with most of the species found affiliated with the phyla Firmicutes and Proteobacteria. However, by far the most abundant species was the thermophile Thermus thermophilus, which made up approximately 50% of the bacterial population present. Although the leachate was routinely collected and stored in an aerated central storage tank, many of the bacterial species found in leachate were facultative anaerobes. However, there was no evidence for sulfide production, and no sulfate-reducing bacterial species were detected. Because T. thermophilus is important in the high temperature phase of composting, the use of recycled leachate as an inoculum for the raw materials is likely to be beneficial for the composting process.


Subject(s)
Bacterial Physiological Phenomena , Biodiversity , Composting , Bacteria/genetics , Manure/microbiology , Population Dynamics , RNA, Ribosomal, 16S/genetics
9.
Sci Rep ; 8(1): 6059, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29643384

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

10.
Appl Microbiol Biotechnol ; 102(4): 1639-1650, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29362825

ABSTRACT

Mushrooms are an important food crop for many millions of people worldwide. The most important edible mushroom is the button mushroom (Agaricus bisporus), an excellent example of sustainable food production which is cultivated on a selective compost produced from recycled agricultural waste products. A diverse population of bacteria and fungi are involved throughout the production of Agaricus. A range of successional taxa convert the wheat straw into compost in the thermophilic composting process. These initially break down readily accessible compounds and release ammonia, and then assimilate cellulose and hemicellulose into compost microbial biomass that forms the primary source of nutrition for the Agaricus mycelium. This key process in composting is performed by a microbial consortium consisting of the thermophilic fungus Mycothermus thermophilus (Scytalidium thermophilum) and a range of thermophilic proteobacteria and actinobacteria, many of which have only recently been identified. Certain bacterial taxa have been shown to promote elongation of the Agaricus hyphae, and bacterial activity is required to induce production of the mushroom fruiting bodies during cropping. Attempts to isolate mushroom growth-promoting bacteria for commercial mushroom production have not yet been successful. Compost bacteria and fungi also cause economically important losses in the cropping process, causing a range of destructive diseases of mushroom hyphae and fruiting bodies. Recent advances in our understanding of the key bacteria and fungi in mushroom compost provide the potential to improve productivity of mushroom compost and to reduce the impact of crop disease.


Subject(s)
Agaricus/growth & development , Composting , Microbial Consortia , Soil Microbiology , Biotransformation , Humans , Plant Stems/metabolism , Triticum/metabolism
11.
Proc Natl Acad Sci U S A ; 114(36): 9623-9628, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28830999

ABSTRACT

Blood circulates throughout the human body and contains molecules drawn from virtually every tissue, including the microbes and viruses which colonize the body. Through massive shotgun sequencing of circulating cell-free DNA from the blood, we identified hundreds of new bacteria and viruses which represent previously unidentified members of the human microbiome. Analyzing cumulative sequence data from 1,351 blood samples collected from 188 patients enabled us to assemble 7,190 contiguous regions (contigs) larger than 1 kbp, of which 3,761 are novel with little or no sequence homology in any existing databases. The vast majority of these novel contigs possess coding sequences, and we have validated their existence both by finding their presence in independent experiments and by performing direct PCR amplification. When their nearest neighbors are located in the tree of life, many of the organisms represent entirely novel taxa, showing that microbial diversity within the human body is substantially broader than previously appreciated.


Subject(s)
Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , DNA, Bacterial/blood , DNA, Bacterial/genetics , DNA, Viral/blood , DNA, Viral/genetics , Microbiota/genetics , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Humans , Metagenomics/methods , Phylogeny
12.
Sci Rep ; 7(1): 8314, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28814720

ABSTRACT

Methane concentration in caves is commonly much lower than the external atmosphere, yet the cave CH4 depletion causal mechanism is contested and dynamic links to external diurnal and seasonal temperature cycles unknown. Here, we report a continuous 3-year record of cave methane and other trace gases in Jenolan Caves, Australia which shows a seasonal cycle of extreme CH4 depletion, from ambient ~1,775 ppb to near zero during summer and to ~800 ppb in winter. Methanotrophic bacteria, some newly-discovered, rapidly consume methane on cave surfaces and in external karst soils with lifetimes in the cave of a few hours. Extreme bacterial selection due to the absence of alternate carbon sources for growth in the cave environment has resulted in an extremely high proportion 2-12% of methanotrophs in the total bacteria present. Unexpected seasonal bias in our cave CH4 depletion record is explained by a three-step process involving methanotrophy in aerobic karst soil above the cave, summer transport of soil-gas into the cave through epikarst, followed by further cave CH4 depletion. Disentangling cause and effect of cave gas variations by tracing sources and sinks has identified seasonal speleothem growth bias, with implied palaeo-climate record bias.

13.
FEMS Microbiol Ecol ; 93(1)2017 01.
Article in English | MEDLINE | ID: mdl-27737901

ABSTRACT

Alkaline phosphatases such as PhoD and PhoX are important in organic phosphorus cycling in soil. We identified the key organisms harboring the phoD and phoX genes in soil and explored the relationships between environmental factors and the phoD- and phoX-harboring community structures across three land uses located in arid to temperate climates on two continents using 454-sequencing. phoD was investigated using recently published primers, and new primers were designed to study phoX in soil. phoD was found in 1 archaeal, 13 bacterial and 2 fungal phyla, and phoX in 1 archaeal and 16 bacterial phyla. Dominant phoD-harboring phyla were Actinobacteria, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes and Proteobacteria, while abundant phoX-harboring phyla were Acidobacteria, Actinobacteria, Chloroflexi, Planctomycetes, Proteobacteria and Verrucomicrobia. Climate, soil group, land use and soil nutrient concentrations were the common environmental drivers of both community structures. In addition, the phoX-harboring community structure was affected by pH. Despite differences in environmental factors, the dominant phyla in the phoD-harboring community remained similar in all samples, while the composition of phoX differed substantially between the samples. This study shows that the composition of phoD and phoX is governed by the same environmental drivers but that phoD and phoX occur partly in different phyla.


Subject(s)
Alkaline Phosphatase/genetics , Bacteria/enzymology , Bacterial Proteins/genetics , Genetic Variation , Soil Microbiology , Alkaline Phosphatase/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/metabolism , Climate , Oxazoles , Phosphorus/analysis , Phosphorus/metabolism , Soil/chemistry
14.
Open Forum Infect Dis ; 3(3): ofw144, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27704003

ABSTRACT

We report the case of a 60-year-old man with septic shock due to Capnocytophaga canimorsus that was diagnosed in 24 hours by a novel whole-genome next-generation sequencing assay. This technology shows great promise in identifying fastidious pathogens, and, if validated, it has profound implications for infectious disease diagnosis.

15.
Proc Natl Acad Sci U S A ; 112(43): 13336-41, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26460048

ABSTRACT

The survival rate following lung transplantation is among the lowest of all solid-organ transplants, and current diagnostic tests often fail to distinguish between infection and rejection, the two primary posttransplant clinical complications. We describe a diagnostic assay that simultaneously monitors for rejection and infection in lung transplant recipients by sequencing of cell-free DNA (cfDNA) in plasma. We determined that the levels of donor-derived cfDNA directly correlate with the results of invasive tests of rejection (area under the curve 0.9). We also analyzed the nonhuman cfDNA as a hypothesis-free approach to test for infections. Cytomegalovirus is most frequently assayed clinically, and the levels of CMV-derived sequences in cfDNA are consistent with clinical results. We furthermore show that hypothesis-free monitoring for pathogens using cfDNA reveals undiagnosed cases of infection, and that certain infectious pathogens such as human herpesvirus (HHV) 6, HHV-7, and adenovirus, which are not often tested clinically, occur with high frequency in this cohort.


Subject(s)
DNA, Viral/blood , Graft Rejection/diagnosis , Lung Transplantation/adverse effects , Postoperative Care/methods , Surgical Wound Infection/diagnosis , Base Sequence , Cytomegalovirus/genetics , Humans , Molecular Sequence Data , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , Species Specificity , Surgical Wound Infection/virology
16.
Appl Environ Microbiol ; 81(20): 7281-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26253682

ABSTRACT

Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples.


Subject(s)
Alkaline Phosphatase/genetics , Soil Microbiology , Actinomycetales/enzymology , Bacillales/enzymology , Deinococcus/enzymology , Genetic Variation/genetics , Planctomycetales/enzymology , Xanthomonadaceae/enzymology
17.
J Basic Microbiol ; 55(7): 819-29, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25656248

ABSTRACT

Cypermethrin is widely used for insect control; however, its toxicity toward aquatic life requires its complete removal from contaminated areas where the natural degradation ability of microbes can be utilized. Agricultural soil with extensive history of CM application was used to prepare enrichment cultures using cypermethrin as sole carbon source for isolation of cypermethrin degrading bacteria and bacterial community analysis using PCR-DGGE of 16 S rRNA gene. DGGE analysis revealed that dominant members of CM enrichment culture were associated with α-proteobacteria followed by γ-proteobacteria, Firmicutes, and Actinobacteria. Three potential CM-degrading isolates identified as Ochrobactrum anthropi JCm1, Bacillus megaterium JCm2, and Rhodococcus sp. JCm5 degraded 86-100% of CM (100 mg L(-1) ) within 10 days. These isolates were also able to degrade other pyrethroids, carbofuran, and cypermethrin degradation products. Enzyme activity assays revealed that enzymes involved in CM-degradation were inducible and showed activity when strains were grown on cypermethrin. Degradation kinetics of cypermethrin (200 mg kg(-1)) in soils inoculated with isolates JCm1, JCm2, and JCm5 suggested time-dependent disappearance of cypermethrin with rate constants of 0.0516, 0.0425, and 0.0807 d(-1), respectively, following first order rate kinetics. The isolated bacterial strains were among dominant genera selected under CM enriched conditions and represent valuable candidates for in situ bioremediation of contaminated soils and waters.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Microbial Consortia/physiology , Pyrethrins/metabolism , Soil Microbiology , Alphaproteobacteria/enzymology , Alphaproteobacteria/isolation & purification , Alphaproteobacteria/metabolism , Bacteria/enzymology , Biodegradation, Environmental , Gammaproteobacteria/enzymology , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/metabolism , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Soil Pollutants/metabolism
18.
Genome Res ; 25(4): 534-43, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25665577

ABSTRACT

Accurate evaluation of microbial communities is essential for understanding global biogeochemical processes and can guide bioremediation and medical treatments. Metagenomics is most commonly used to analyze microbial diversity and metabolic potential, but assemblies of the short reads generated by current sequencing platforms may fail to recover heterogeneous strain populations and rare organisms. Here we used short (150-bp) and long (multi-kb) synthetic reads to evaluate strain heterogeneity and study microorganisms at low abundance in complex microbial communities from terrestrial sediments. The long-read data revealed multiple (probably dozens of) closely related species and strains from previously undescribed Deltaproteobacteria and Aminicenantes (candidate phylum OP8). Notably, these are the most abundant organisms in the communities, yet short-read assemblies achieved only partial genome coverage, mostly in the form of short scaffolds (N50 = ∼ 2200 bp). Genome architecture and metabolic potential for these lineages were reconstructed using a new synteny-based method. Analysis of long-read data also revealed thousands of species whose abundances were <0.1% in all samples. Most of the organisms in this "long tail" of rare organisms belong to phyla that are also represented by abundant organisms. Genes encoding glycosyl hydrolases are significantly more abundant than expected in rare genomes, suggesting that rare species may augment the capability for carbon turnover and confer resilience to changing environmental conditions. Overall, the study showed that a diversity of closely related strains and rare organisms account for a major portion of the communities. These are probably common features of many microbial communities and can be effectively studied using a combination of long and short reads.


Subject(s)
Bacterial Proteins/genetics , Deltaproteobacteria/genetics , Geologic Sediments/microbiology , Hydrolases/genetics , Microbial Consortia/genetics , Base Sequence , Biodiversity , Chloroflexi/genetics , Chloroflexi/isolation & purification , DNA, Bacterial/genetics , Deltaproteobacteria/isolation & purification , Genome, Bacterial , Geologic Sediments/analysis , Glucose/metabolism , Metagenomics/methods , Sequence Analysis, DNA
19.
Curr Microbiol ; 70(1): 75-84, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25194282

ABSTRACT

The pyrethroid insecticide cypermethrin is in extensive use since 1980s for insect control. However, its toxicity toward aquatic animals and humans requires its complete removal from contaminated areas that can be done using indigenous microbes through bioremediation. In this study, three bacterial strains isolated from agricultural soil and identified as Acinetobacter calcoaceticus MCm5, Brevibacillus parabrevis FCm9, and Sphingomonas sp. RCm6 were found highly efficient in degrading cypermethrin and other pyrethroids. These bacterial strains were able to degrade more than 85 % of cypermethrin (100 mg L(-1)) within 10 days. Degradation kinetics of cypermethrin (200 mg kg(-1)) in soils inoculated with isolates MCm5, FCm9, and RCm6 suggested time-dependent disappearance of cypermethrin with rate constants of 0.0406, 0.0722, and 0.0483 d(-1) following first-order rate kinetics. Enzyme assays for Carboxylesterase, 3-PBA dioxygenase, Phenol hydroxylase, and Catechol-1,2 dioxygenase showed higher activities with cypermethrin treated cell-free extracts compared to non-treated cell-free extracts. Meanwhile, SDS-PAGE analysis showed upregulation of some bands in cypermethrin-treated cells. This might suggest that cypermethrin degradation in these strains involves inducible enzymes. Besides, the isolates displayed substantial plant growth-promoting traits such as phosphate solubilization, Indole acetic acid production, and ammonia production. Implying the efficient biodegradation potential along with multiple biological properties, these isolates can be valuable candidates for the development of bioremediation strategies.


Subject(s)
Acinetobacter calcoaceticus/metabolism , Brevibacillus/metabolism , Insecticides/metabolism , Plants/microbiology , Pyrethrins/metabolism , Sphingomonas/metabolism , Acinetobacter calcoaceticus/classification , Acinetobacter calcoaceticus/genetics , Acinetobacter calcoaceticus/isolation & purification , Biodegradation, Environmental , Brevibacillus/classification , Brevibacillus/genetics , Brevibacillus/isolation & purification , Insecticides/chemistry , Kinetics , Molecular Sequence Data , Phylogeny , Plant Development , Pyrethrins/chemistry , Soil Microbiology , Sphingomonas/classification , Sphingomonas/genetics , Sphingomonas/isolation & purification
20.
PLoS One ; 9(9): e106689, 2014.
Article in English | MEDLINE | ID: mdl-25188499

ABSTRACT

High-throughput DNA sequencing technologies have revolutionized genomic analysis, including the de novo assembly of whole genomes. Nevertheless, assembly of complex genomes remains challenging, in part due to the presence of dispersed repeats which introduce ambiguity during genome reconstruction. Transposable elements (TEs) can be particularly problematic, especially for TE families exhibiting high sequence identity, high copy number, or complex genomic arrangements. While TEs strongly affect genome function and evolution, most current de novo assembly approaches cannot resolve long, identical, and abundant families of TEs. Here, we applied a novel Illumina technology called TruSeq synthetic long-reads, which are generated through highly-parallel library preparation and local assembly of short read data and which achieve lengths of 1.5-18.5 Kbp with an extremely low error rate ([Formula: see text]0.03% per base). To test the utility of this technology, we sequenced and assembled the genome of the model organism Drosophila melanogaster (reference genome strain y; cn, bw, sp) achieving an N50 contig size of 69.7 Kbp and covering 96.9% of the euchromatic chromosome arms of the current reference genome. TruSeq synthetic long-read technology enables placement of individual TE copies in their proper genomic locations as well as accurate reconstruction of TE sequences. We entirely recovered and accurately placed 4,229 (77.8%) of the 5,434 annotated transposable elements with perfect identity to the current reference genome. As TEs are ubiquitous features of genomes of many species, TruSeq synthetic long-reads, and likely other methods that generate long-reads, offer a powerful approach to improve de novo assemblies of whole genomes.


Subject(s)
DNA Transposable Elements/genetics , Drosophila melanogaster/genetics , High-Throughput Nucleotide Sequencing/methods , Animals , Genome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...