Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 90: 102934, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37688981

ABSTRACT

Most current deep learning based approaches for image segmentation require annotations of large datasets, which limits their application in clinical practice. We observe a mismatch between the voxelwise ground-truth that is required to optimize an objective at a voxel level and the commonly used, less time-consuming clinical annotations seeking to characterize the most important information about the patient (diameters, counts, etc.). In this study, we propose to bridge this gap for the case of multiple nested star-shaped objects (e.g., a blood vessel lumen and its outer wall) by optimizing a deep learning model based on diameter annotations. This is achieved by extracting in a differentiable manner the boundary points of the objects at training time, and by using this extraction during the backpropagation. We evaluate the proposed approach on segmentation of the carotid artery lumen and wall from multisequence MR images, thus reducing the annotation burden to only four annotated landmarks required to measure the diameters in the direction of the vessel's maximum narrowing. Our experiments show that training based on diameter annotations produces state-of-the-art weakly supervised segmentations and performs reasonably compared to full supervision. We made our code publicly available at https://gitlab.com/radiology/aim/carotid-artery-image-analysis/nested-star-shaped-objects.

2.
Med Image Anal ; 82: 102617, 2022 11.
Article in English | MEDLINE | ID: mdl-36228364

ABSTRACT

Domain adaptation (DA) has drawn high interest for its capacity to adapt a model trained on labeled source data to perform well on unlabeled or weakly labeled target data from a different domain. Most common DA techniques require concurrent access to the input images of both the source and target domains. However, in practice, privacy concerns often impede the availability of source images in the adaptation phase. This is a very frequent DA scenario in medical imaging, where, for instance, the source and target images could come from different clinical sites. We introduce a source-free domain adaptation for image segmentation. Our formulation is based on minimizing a label-free entropy loss defined over target-domain data, which we further guide with weak labels of the target samples and a domain-invariant prior on the segmentation regions. Many priors can be derived from anatomical information. Here, a class-ratio prior is estimated from anatomical knowledge and integrated in the form of a Kullback-Leibler (KL) divergence in our overall loss function. Furthermore, we motivate our overall loss with an interesting link to maximizing the mutual information between the target images and their label predictions. We show the effectiveness of our prior-aware entropy minimization in a variety of domain-adaptation scenarios, with different modalities and applications, including spine, prostate and cardiac segmentation. Our method yields comparable results to several state-of-the-art adaptation techniques, despite having access to much less information, as the source images are entirely absent in our adaptation phase. Our straightforward adaptation strategy uses only one network, contrary to popular adversarial techniques, which are not applicable to a source-free DA setting. Our framework can be readily used in a breadth of segmentation problems, and our code is publicly available: https://github.com/mathilde-b/SFDA.


Subject(s)
Prostate , Spine , Humans , Male , Image Processing, Computer-Assisted/methods
3.
Med Image Anal ; 67: 101851, 2021 01.
Article in English | MEDLINE | ID: mdl-33080507

ABSTRACT

Widely used loss functions for CNN segmentation, e.g., Dice or cross-entropy, are based on integrals over the segmentation regions. Unfortunately, for highly unbalanced segmentations, such regional summations have values that differ by several orders of magnitude across classes, which affects training performance and stability. We propose a boundary loss, which takes the form of a distance metric on the space of contours, not regions. This can mitigate the difficulties of highly unbalanced problems because it uses integrals over the interface between regions instead of unbalanced integrals over the regions. Furthermore, a boundary loss complements regional information. Inspired by graph-based optimization techniques for computing active-contour flows, we express a non-symmetric L2 distance on the space of contours as a regional integral, which avoids completely local differential computations involving contour points. This yields a boundary loss expressed with the regional softmax probability outputs of the network, which can be easily combined with standard regional losses and implemented with any existing deep network architecture for N-D segmentation. We report comprehensive evaluations and comparisons on different unbalanced problems, showing that our boundary loss can yield significant increases in performances while improving training stability. Our code is publicly available1.


Subject(s)
Image Processing, Computer-Assisted , Humans
4.
Neural Netw ; 130: 297-308, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32721843

ABSTRACT

An efficient strategy for weakly-supervised segmentation is to impose constraints or regularization priors on target regions. Recent efforts have focused on incorporating such constraints in the training of convolutional neural networks (CNN), however this has so far been done within a continuous optimization framework. Yet, various segmentation constraints and regularization priors can be modeled and optimized more efficiently in a discrete formulation. This paper proposes a method, based on the alternating direction method of multipliers (ADMM) algorithm, to train a CNN with discrete constraints and regularization priors. This method is applied to the segmentation of medical images with weak annotations, where both size constraints and boundary length regularization are enforced. Experiments on two benchmark datasets for medical image segmentation show our method to provide significant improvements compared to existing approaches in terms of segmentation accuracy, constraint satisfaction and convergence speed.


Subject(s)
Pattern Recognition, Automated/methods , Supervised Machine Learning , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer
5.
Med Image Anal ; 54: 88-99, 2019 05.
Article in English | MEDLINE | ID: mdl-30851541

ABSTRACT

Weakly-supervised learning based on, e.g., partially labelled images or image-tags, is currently attracting significant attention in CNN segmentation as it can mitigate the need for full and laborious pixel/voxel annotations. Enforcing high-order (global) inequality constraints on the network output (for instance, to constrain the size of the target region) can leverage unlabeled data, guiding the training process with domain-specific knowledge. Inequality constraints are very flexible because they do not assume exact prior knowledge. However, constrained Lagrangian dual optimization has been largely avoided in deep networks, mainly for computational tractability reasons. To the best of our knowledge, the method of Pathak et al. (2015a) is the only prior work that addresses deep CNNs with linear constraints in weakly supervised segmentation. It uses the constraints to synthesize fully-labeled training masks (proposals) from weak labels, mimicking full supervision and facilitating dual optimization. We propose to introduce a differentiable penalty, which enforces inequality constraints directly in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation. From constrained-optimization perspective, our simple penalty-based approach is not optimal as there is no guarantee that the constraints are satisfied. However, surprisingly, it yields substantially better results than the Lagrangian-based constrained CNNs in Pathak et al. (2015a), while reducing the computational demand for training. By annotating only a small fraction of the pixels, the proposed approach can reach a level of segmentation performance that is comparable to full supervision on three separate tasks. While our experiments focused on basic linear constraints such as the target-region size and image tags, our framework can be easily extended to other non-linear constraints, e.g., invariant shape moments (Klodt and Cremers, 2011) and other region statistics (Lim et al., 2014). Therefore, it has the potential to close the gap between weakly and fully supervised learning in semantic medical image segmentation. Our code is publicly available.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Supervised Machine Learning , Heart Ventricles/diagnostic imaging , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging, Cine , Male , Prostate/diagnostic imaging , Spine/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...