Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Space Phys ; 127(4): e2021JA030183, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35866071

ABSTRACT

Ionospheric plasma irregularities can be successfully studied with the Swarm satellites. Parameters derived from the in-situ plasma measurements and from the topside ionosphere total electron content provide a comprehensive dataset for characterizing plasma structuring along the orbits of the Swarm satellites. The Ionospheric Plasma IRregularities (IPIR) data product summarizes these parameters and allows for systematic studies of ionospheric irregularities. IPIR has already been used in investigations of structuring and variability of ionospheric plasma. This report provides a detailed description of algorithms behind the IPIR data product and demonstrates its use for ionospheric studies.

2.
Ann Geophys ; 34(10): 901-915, 2016.
Article in English | MEDLINE | ID: mdl-29056833

ABSTRACT

ESA's Swarm constellation mission makes it possible for the first time to determine field-aligned currents (FACs) in the ionosphere uniquely. In particular at high latitudes, the dual-satellite approach can reliably detect some FAC structures which are missed by the traditional single-satellite technique. These FAC events occur preferentially poleward of the auroral oval and during times of northward interplanetary magnetic field (IMF) orientation. Most events appear on the nightside. They are not related to the typical FAC structures poleward of the cusp, commonly termed NBZ. Simultaneously observed precipitating particle spectrograms and auroral images from Defense Meteorological Satellite Program (DMSP) satellites are consistent with the detected FACs and indicate that they occur on closed field lines mostly adjacent to the auroral oval. We suggest that the FACs are associated with Sun-aligned filamentary auroral arcs. Here we introduce in an initial study features of the high-latitude FAC structures which have been observed during the early phase of the Swarm mission. A more systematic survey over longer times is required to fully characterize the so far undetected field aligned currents.

SELECTION OF CITATIONS
SEARCH DETAIL
...