Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 127(6): 1547-1554, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36744789

ABSTRACT

Exploring magnetic properties at the molecular level is a challenge that has been met by developing many experimental and theoretical solutions, such as polarized neutron diffraction (PND), muon-spin rotation (µ-SR), electron paramagnetic resonance (EPR), SQUID-based magnetometry measurements, and advanced modeling on open-shell systems and relativistic calculations. These methods are powerful tools that shed light on the local magnetic response in specifically designed magnetic materials such as contrast agents, for MRI, molecular magnets, magnetic tags for biological NMR, etc. All of these methods have their advantages and disadvantages. In order to complement the possibilities offered by these methods, we propose a new tool that implements a new approach combining simulation and fitting for high-resolution solid-state NMR spectra of lanthanide-based paramagnetic species. This method relies on a rigorous acquisition thanks to short high-power adiabatic pulses (SHAP) of high-resolution solid-state NMR isotropic and anisotropic data on a powdered magnetic material. It is also based on an efficient modeling of this data thanks to a semiempirical model based on a parametrization of the local magnetism and the crystal structure provided by diffraction methods. The efficiency of the calculation relies on a thorough simplification of the electron-nucleus interactions (point-dipole interaction, no Fermi contact) which is validated by experimental analysis. By taking advantage of the efficient calculation possibilities offered by our method, we can compare a great number of simulated spectra to experimental data and find the best-matching local magnetic susceptibility tensor. This method was applied to a series of isostructural lanthanide oxalates which are used as a benchmark system for many analytical methods. We present the results of thorough solid-state NMR and extensive modeling of the hyperfine interaction (including up to 400 paramagnetic centers) that yield local magnetic susceptibility tensor measurements that are self-consistent as well as consistent with bulk susceptibility measurements.

2.
Sci Rep ; 12(1): 20530, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36446835

ABSTRACT

The development of strategies to overcome the shortage of forage due to persistently low rainfall is becoming a central task for animal nutrition in research and practice. In this study, it was investigated how the treatment of straw with NaOH or feed urea in a practicable procedure for modern farms affects rumen fermentation (gas production and greenhouse gas concentration) as well as the digestibility of feed energy and nutrients. For this purpose, the treatments were tested individually and in different proportions in a total mixed ration (TMR) in ruminal batch cultures in vitro and in a digestibility trial with sheep. In order to explain the observed effects at the molecular level, descriptive data from 13C solid state nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy were obtained. NaOH treatment of straw increased crude ash (CA), non-fibrous carbohydrates, digestible energy (DE), and metabolizable energy (ME) concentration, whereas the proportion of neutral detergent fibre (aNDFom) and hemicellulose decreased. In urea treated straw, NH3-N and crude protein increased, whereas acid detergent lignin (ADL), DE, and ME decreased. The physically effective fibre (peNDF8) concentration increased in TMR containing 18% of NaOH or urea treated straw (p < 0.01). The application of straw treatments as pure substrates (not as part of a TMR) increased gas production and decelerated ruminal fermentation (p < 0.05). In vitro organic matter digestibility (IVOMD) of the straw (0.31) increased after NaOH (0.51; p < 0.05) and urea treatment (0.41; p > 0.05). As part of a TMR, straw treatments had no distinct effect on gas production or IVOMD. Concentrations of CH4 and CO2 were likewise not affected. Apparent total tract digestibility of aNDFom, acid detergent fibre (ADFom), hemicellulose, and cellulose increased in the TMR by approximately 10% points following NaOH treatment (p < 0.05). The inclusion of urea treated straw did not affect apparent digestibility. Calculated true digestibility of aNDFom was 0.68, 0.74, and 0.79, of ADFom 0.58, 0.57, and 0.65, and of ADL 0.02, 0.13, and 0.08 in TMR including untreated, NaOH treated, and urea treated straw, respectively. 13C NMR and FTIR analyses consistently revealed that the global structure and crystallinity of the carbohydrates (cellulose and hemicellulose) was not altered by treatment and the concentration of lignin was likewise not affected. Depolymerisation of lignin did not occur. However, NMR signals assigned to acetyl groups were significantly altered indicating that straw treatments disrupted linkages between hemicelluloses and lignin. Moreover, the acetates signal was affected. This signal can be assigned to linkages between ferulic acids and hemicelluloses (arabinoxylans). FTIR spectra of straw treatments mainly differed at a wavelength of 1730 cm-1 and 1240 cm-1. Disappearance of the 1730 cm-1 peak suggests removal of hemicelluloses or lignin related compounds by treatment. The disappearance of the lignin peak at 1240 cm-1 could be due to conjugated ketone (phenyl-carbonyl) removal or the removal of ferulic and p-coumaric acid acetyl groups. Both treatments are supposed to release fermentable cell wall components (hemicelluloses) from lignin-associated bonds and as a result, straw fibre can be better fermented in the rumen. This contributes to energy supply and increased fibre digestibility at least in the TMR that contained NaOH treated straw. The alkaline straw treatments probably induced a release of phenolics such as ferulic acid and p-coumaric acid, which can be metabolised in the gut and the liver and metabolites might be excreted with the urine. This could notably contribute to metabolic energy losses.


Subject(s)
Hordeum , Animals , Cellulose , Detergents , Dietary Fiber , Lignin , Ruminants , Sheep , Sodium Hydroxide , Urea
3.
J Chem Phys ; 138(23): 234201, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23802953

ABSTRACT

We use symmetry arguments and simple model systems to describe the conversion of the singlet state of parahydrogen into an oscillating sample magnetization at zero magnetic field. During an initial period of free evolution governed by the scalar-coupling Hamiltonian HJ, the singlet state is converted into scalar spin order involving spins throughout the molecule. A short dc pulse along the z axis rotates the transverse spin components of nuclear species I and S through different angles, converting a portion of the scalar order into vector order. The development of vector order can be described analytically by means of single-transition operators, and it is found to be maximal when the transverse components of I are rotated by an angle of ±π∕2 relative to those of S. A period of free evolution follows the pulse, during which the vector order evolves as a set of oscillating coherences. The imaginary parts of the coherences represent spin order that is not directly detectable, while the real parts can be identified with oscillations in the z component of the molecular spin dipole. The dipole oscillations are due to a periodic exchange between Iz and Sz, which have different gyromagnetic ratios. The frequency components of the resulting spectrum are imaginary, since the pulse cannot directly induce magnetization in the sample; it is only during the evolution under HJ that the vector order present at the end of the pulse evolves into detectable magnetization.

4.
Top Curr Chem ; 335: 157-200, 2013.
Article in English | MEDLINE | ID: mdl-22392478

ABSTRACT

A number of technical improvements have recently opened up solid-state NMR to the analysis of new classes of substrates with wide ranging implications for molecular and biological sciences, with an immediate impact on a large community of researchers. A wealth of information can be extracted from the analysis of solid-state NMR signals of paramagnetic compounds, as the changes induced by the paramagnetic center depend in a well-defined way on the structure of the molecule. Solid-state NMR is in a position to allow direct, straightforward experimental access to the fine details of the molecular electronic configuration, which is in turn a sensible reporter of the molecular geometry in small catalysts as well as in larger biomolecules.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Catalysis , Ions , Magnetic Resonance Spectroscopy/instrumentation , Metals/chemistry , Models, Statistical , Molecular Conformation
5.
J Am Chem Soc ; 134(9): 3987-90, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22332806

ABSTRACT

We have recently demonstrated that sensitive and chemically specific NMR spectra can be recorded in the absence of a magnetic field using hydrogenative parahydrogen induced polarization (PHIP) (1-3) and detection with an optical atomic magnetometer. Here, we show that non-hydrogenative parahydrogen-induced polarization (4-6) (NH-PHIP) can also dramatically enhance the sensitivity of zero-field NMR. We demonstrate the detection of pyridine, at concentrations as low as 6 mM in a sample volume of 250 µL, with sufficient sensitivity to resolve all identifying spectral features, as supported by numerical simulations. Because the NH-PHIP mechanism is nonreactive, operates in situ, and eliminates the need for a prepolarizing magnet, its combination with optical atomic magnetometry will greatly broaden the analytical capabilities of zero-field and low-field NMR.


Subject(s)
Hydrogen/chemistry , Magnetic Resonance Spectroscopy , Pyridines/analysis
6.
J Chem Phys ; 134(2): 024117, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21241090

ABSTRACT

We explain how and under which conditions it is possible to obtain an efficient inversion of an entire sideband family of several hundred kHz using low-power, sideband-selective adiabatic pulses, and we illustrate with some experimental results how this framework opens new avenues in solid-state NMR for manipulating spin systems with wide spinning-sideband (SSB) manifolds. This is achieved through the definition of the criteria of phase and amplitude modulation for designing an adiabatic inversion pulse for rotating solids. In turn, this is based on a framework for representing the Hamiltonian of the spin system in an NMR experiment under magic angle spinning (MAS). Following earlier ideas from Caravatti et al. [J. Magn. Reson. 55, 88 (1983)], the so-called "jolting frame" is used, which is the interaction frame of the anisotropic interaction giving rise to the SSB manifold. In the jolting frame, the shift modulation affecting the nuclear spin is removed, while the Hamiltonian corresponding to the RF field is frequency modulated and acquires a spinning-sideband pattern, specific for each crystallite orientation.


Subject(s)
Magnetic Resonance Spectroscopy/standards , Organometallic Compounds/chemistry , Organoselenium Compounds/chemistry , Terbium/chemistry , Molecular Structure , Reference Standards
7.
Angew Chem Int Ed Engl ; 48(17): 3082-6, 2009.
Article in English | MEDLINE | ID: mdl-19301347

ABSTRACT

Shifts for crystals: Solid-state NMR spectroscopy can be used for structure determination of microcrystalline paramagnetic solids at natural isotopic abundance. The protocol makes use of paramagnetic effects, measured on suitably recorded (1)H NMR spectra, to define the conformation of a molecule in the lattice and the intermolecular packing in the solid phase. The method is illustrated with a family of lanthanide compounds (see picture).

8.
J Chem Phys ; 129(20): 204110, 2008 Nov 28.
Article in English | MEDLINE | ID: mdl-19045855

ABSTRACT

Adiabaticity plays a central role in modern magnetic resonance experiments, as excitations with adiabatic Hamiltonians allow precise control of the dynamics of the spin states during the course of an experiment. Surprisingly, many commonly used adiabatic processes in magnetic resonance perform well even though the adiabatic approximation does not appear to hold throughout the process. Here we show that this discrepancy can now be explained through the use of Berry's superadiabatic formalism, which provides a framework for including the finite duration of the process in the theoretical and numerical treatments. In this approach, a slow, but finite time-dependent Hamiltonian is iteratively transformed into time-dependent diagonal frames until the most accurate adiabatic approximation is obtained. In the case of magnetic resonance, the magnetization during an adiabatic process of finite duration is not locked to the effective Hamiltonian in the conventional adiabatic frame, but rather to an effective Hamiltonian in a superadiabatic frame. Only in the superadiabatic frame can the true validity of the adiabatic approximation be evaluated, as the inertial forces acting in this frame are the true cause for deviation from adiabaticity and loss of control during the process. Here we present a brief theoretical background of superadiabaticity and illustrate the concept in the context of magnetic resonance with commonly used shaped radio-frequency pulses.

10.
J Am Chem Soc ; 128(41): 13545-52, 2006 Oct 18.
Article in English | MEDLINE | ID: mdl-17031968

ABSTRACT

A general protocol for the structural characterization of paramagnetic molecular solids using solid-state NMR is provided and illustrated by the characterization of a high-spin Fe(II) catalyst precursor. We show how good NMR performance can be obtained on a molecular powder sample at natural abundance by using very fast (>30 kHz) magic angle spinning (MAS), even though the individual NMR resonances have highly anisotropic shifts and very short relaxation times. The results include the optimization of broadband heteronuclear (proton-carbon) recoupling sequences for polarization transfer; the observation of single or multiple quantum correlation spectra between coupled spins as a tool for removing the inhomogeneous bulk magnetic susceptibility (BMS) broadening; and the combination of NMR experiments and density functional theory calculations, to yield assignments.


Subject(s)
Algorithms , Iron/chemistry , Magnetic Resonance Spectroscopy/methods , Organometallic Compounds/chemistry , Anisotropy , Carbon/chemistry , Carbon Isotopes/chemistry , Catalysis , Cations, Divalent , Crystallography, X-Ray , Deuterium/chemistry , Magnetics , Protons , Quantum Theory , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...