Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 8(4)2016 Apr 08.
Article in English | MEDLINE | ID: mdl-30979224

ABSTRACT

The impact of electrostatic attraction on the uptake of gold nanoparticles (AuNPs) into positively charged strong poly-[2-(Methacryloyloxy) ethyl] trimethylammonium chloride (PMETAC) polyelectrolyte brushes was investigated. In this work, PMETAC brushes were synthesized via surface-initiated atom transfer radical polymerization (Si-ATRP). PMETAC/AuNP composite materials were prepared by incubation of the polymer brush coated samples into 3-mercaptopropionic acid-capped AuNP (5 nm in diameter) suspension. The electrostatic interactions were tuned by changing the surface charge of the AuNPs through variations in pH value, while the charge of the PMETAC brush was not affected. Atomic-force microscopy (AFM), ellipsometry, UV/Vis spectroscopy, gravimetric analysis and transmission electron microscopy (TEM) were employed to study the loading and penetration into the polymer brush. The results show that the number density of attached AuNPs depends on the pH value and increases with increasing pH value. There is also strong evidence that the particle assembly is dependent on the pH value of the AuNP suspension. Incubation of PMETAC brushes in AuNP suspension at pH 4 led to the formation of a surface layer on top of the brush (2D assembly) due to sterical hindrance of the clustered AuNPs, while incubation in AuNP suspension at pH 8 led to deeper particle penetration into the brush (3D assembly). The straightforward control of particle uptake and assembly by tuning the charge density of the nanoparticle surface is a valuable tool for the development of materials for colorimetric sensor applications.

2.
ACS Appl Mater Interfaces ; 7(30): 16247-56, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26156573

ABSTRACT

The adhesion of polyamide 6 (PA6) and polyethylene (PE) toward an aluminum alloy (Al-A) and a dual phase steel (DPS) is studied by contact angle (CA) measurements and atomic force microscopy (AFM). With the combination of the two methods the adhesion properties on a macro- and (sub)microscopic scale can be determined in a nondestructive way. The work of adhesion per area (Wad) of the studied metal/polymer hybrids qualitatively scales the same on both length scales, that is, Al-A/PA6 > DPS/PA6 > Al-A/PE, DPS/PE. The polymer dominates the adhesion. The lower adhesion for PE toward the metal surfaces is explained by dominating van der Waals attraction forces, whereas adhesion for PA6 can also be attributed to attractive polar forces such as hydrogen bonding. For metal/PA6, Wad on a macro- and microscopic length scale is similar. For metal/PE, a discrepancy is measured with lower adhesion values on the microscopic scale than on the macroscopic scale.

3.
Langmuir ; 31(7): 2202-10, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25654206

ABSTRACT

The adsorption of ethylene glycol (EG)-based microgel particles at silicon surfaces was investigated. Monodisperse p-MeO2MA-co-OEGMA microgel particles were synthesized by precipitation polymerization. Particle size and the volume phase transition temperature (VPTT) can be tailored by changing the amount of comonomer. The effect of geometrical confinement on the microgel particles was studied at the solid/liquid interface. Therefore, layer formation, particle number density, and swelling/deswelling at the surface were studied in dependence on the spin-coating preparation parameters and characterized by means of AFM against ambient conditions. The deswelling/swelling behavior was investigated by AFM in the water-swollen state.


Subject(s)
Ethylene Glycol/chemistry , Methacrylates/chemistry , Polyethylene Glycols/chemistry , Silicon/chemistry , Gels/chemistry , Microscopy, Atomic Force , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...