Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; : e0078824, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916325

ABSTRACT

Tuberculosis (TB) is a leading cause of death among infectious diseases worldwide due to latent TB infection, which is the critical step for the successful pathogenic cycle. In this stage, Mycobacterium tuberculosis resides inside the host in a dormant and antibiotic-tolerant state. Latent TB infection can also lead to multisystemic diseases because M. tuberculosis invades virtually all organs, including ocular tissues. Ocular tuberculosis (OTB) occurs when the dormant bacilli within the ocular tissues reactivate, originally seeded by hematogenous spread from pulmonary TB. Histological evidence suggests that retinal pigment epithelium (RPE) cells play a central role in immune privilege and in protection from antibiotic effects, making them an anatomical niche for invading M. tuberculosis. RPE cells exhibit high tolerance to environmental redox stresses, allowing phagocytosed M. tuberculosis bacilli to maintain viability in a dormant state. However, the microbiological and metabolic mechanisms determining the interaction between the RPE intracellular environment and phagocytosed M. tuberculosis are largely unknown. Here, liquid chromatography-mass spectrometry metabolomics were used to illuminate the metabolic state within RPE cells reprogrammed to harbor dormant M. tuberculosis bacilli and enhance antibiotic tolerance. Timely and accurate diagnosis as well as efficient chemotherapies are crucial in preventing the poor visual outcomes of OTB patients. Unfortunately, the efficacy of current methods is highly limited. Thus, the results will lead to propose a novel therapeutic option to synthetically kill the dormant M. tuberculosis inside the RPE cells by modulating the phenotypic state of M. tuberculosis and laying the foundation for a new, innovative regimen for treating OTB. IMPORTANCE: Understanding the metabolic environment within the retinal pigment epithelium (RPE) cells altered by infection with Mycobacterium tuberculosis and mycobacterial dormancy is crucial to identify new therapeutic methods to cure ocular tuberculosis. The present study showed that RPE cellular metabolism is altered to foster intracellular M. tuberculosis to enter into the dormant and drug-tolerant state, thereby blunting the efficacy of anti-tuberculosis chemotherapy. RPE cells serve as an anatomical niche as the cells protect invading bacilli from antibiotic treatment. LC-MS metabolomics of RPE cells after co-treatment with H2O2 and M. tuberculosis infection showed that the intracellular environment within RPE cells is enriched with a greater level of oxidative stress. The antibiotic tolerance of intracellular M. tuberculosis within RPE cells can be restored by a metabolic manipulation strategy such as co-treatment of antibiotic with the most downstream glycolysis metabolite, phosphoenolpyruvate.

2.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562751

ABSTRACT

Tuberculosis (TB) is a leading cause of death among infectious diseases worldwide due to latent TB infection, which is the critical step for the successful pathogenic cycle. In this stage, Mycobacterium tuberculosis resides inside the host in a dormant and antibiotic-tolerant state. Latent TB infection can lead to a multisystemic diseases because M. tuberculosis invades virtually all organs, including ocular tissues. Ocular tuberculosis (OTB) occurs when the dormant bacilli within ocular tissues reactivate, originally seeded by hematogenous spread from pulmonary TB. Timely and accurate diagnosis as well as efficient chemotherapies are crucial in preventing poor visual outcomes of OTB patients. Histological evidence suggests that retinal pigment epithelium (RPE) cells play a central role in immune privilege and in the protection from the antibiotic effects, making them an anatomical niche for invading M. tuberculosis . RPE cells exhibit high tolerance to environmental redox stresses, allowing phagocytosed M. tuberculosis bacilli to maintain viability in a dormant state. However, the microbiological and metabolic mechanisms determining the interaction between the RPE intracellular environment and phagocytosed M. tuberculosis are largely unknown. Here, liquid chromatography mass spectrometry (LC-MS) metabolomics was used to illuminate the metabolic state within RPE cells reprogrammed to harbor dormant M. tuberculosis bacilli and enhance the antibiotic tolerance. The results have led to propose a novel therapeutic option to synthetically kill the dormant M. tuberculosis inside the RPE cells by modulating the phenotypic state of M. tuberculosis , thus laying the foundation for a new, innovative regimen for treating OTB. Importance: Understanding the metabolic environment within the retinal pigment epithelium (RPE) cells altered by infection with M. tuberculosis and mycobacterial dormancy is crucial to identify new therapeutic methods to cure OTB. The present study showed that RPE cellular metabolism is altered to foster intracellular M. tuberculosis to enter into the dormant and drug tolerant state, thereby blunting the efficacy of anti-TB chemotherapy. RPE cells serve as an anatomical niche as the cells protect invading bacilli from antibiotic treatment. LC-MS metabolomics of RPE cells after co-treatment with H2O2 and M. tuberculosis infection showed that intracellular environment within RPE cells is enriched with greater level of oxidative stress. The antibiotic tolerance of intracellular M. tuberculosis within RPE cells can be restored by a metabolic manipulation strategy such as co-treatment of antibiotic with the most downstream glycolysis metabolite, phosphoenolpyruvate.

3.
Curr Issues Mol Biol ; 46(1): 612-620, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38248341

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) is a technique that analyzes the metabolic state of tissues based on the spatial distribution of fluorescence lifetimes of certain interacting molecules. We used multiphoton FLIM to study the metabolic state of developing C57BL6/J and rd10 retinas based on the fluorescence lifetimes of free versus bound nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate (NAD(P)H), with free NAD(P)H percentages suggesting increased glycolysis and bound NAD(P)H percentages indicating oxidative phosphorylation. The mice were sacrificed and enucleated at various time points throughout their first 3 months of life. The isolated eyecups were fixed, sectioned using a polyacrylamide gel embedding technique, and then analyzed with FLIM. The results suggested that in both C57BL6/J mice and rd10 mice, oxidative phosphorylation initially decreased and then increased, plateauing over time. This trend, however, was accelerated in rd10 mice, with its turning point occurring at p10 versus the p30 turning point in C57BL6/J mice. There was also a noticeable difference in oxidative phosphorylation rates between the outer and inner retinas in both strains, with greater oxidative phosphorylation present in the latter. A greater understanding of rd10 and WT metabolic changes during retinal development may provide deeper insights into retinal degeneration and facilitate the development of future treatments.

4.
Biomedicines ; 11(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38137345

ABSTRACT

The purpose of this study is to describe worldwide gene therapy clinical trials aimed at treating ophthalmic disorders. Information regarding all worldwide clinical trials was collected through 15 different sources, including ClinicalTrials.gov. There were 159 gene therapy clinical trials on ophthalmic diseases up until 2022. Phase 1/2 trials had the highest frequency (50-32%), followed by phase 2 (33-21%); 107 trials (67%) were conducted in a single country, and 50 trials (31%) were multinational. Overall, the USA was the site of 113 (71%) single or multinational trials. Of the trials, 153 (96%) targeted retina and optic nerve disorders, 3 (2%) glaucoma, 2 (1%) uveitis, and 1 (1%) cornea; 104 trials (65%) employed gene augmentation using viral vectors, and the remaining employed other methods such as inhibitory RNA (18-11%) and cell-based gene therapy using encapsulated cell technology (18-11%). For gene augmentation trials, adeno-associated virus was used for transgene delivery in 87% of cases. The most common conditions targeted by gene augmentation included inherited retinal (74%) and age-related macular degeneration (wet, 14%; dry, 7%). Overall, a large number of gene therapy clinical trials have been conducted in the eye, and so far, one has led to regulatory approval.

5.
Sci Rep ; 13(1): 3725, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36879027

ABSTRACT

Human studies have established that short periods of dark adaptation can induce outer retinal thinning and various band intensity changes that can be detected with Optical Coherence Tomography (OCT). Similar findings were observed in mice, including a positive correlation between the degree of outer retinal changes and dark adaptation duration. We decided to assess potential retinal structural changes following prolonged dark adaptation in humans. 40 healthy subjects without any ocular diseases participated in this study. For each subject, one eye was covered for dark adaptation for four hours, and the other eye was left uncovered as a control. Before and after the dark adaptation period, both eyes were assessed with OCT. Using the Heidelberg Spectralis system, basic statistical functions, and qualitative and quantitative analysis, we were able to compare retinal layer thicknesses and band intensities between covered (dark adapted) versus uncovered (control) eyes. Prolonged dark adaptation did not induce any significant thickness, volume, or intensity changes in the outer retina or in the inner or overall retina. These observations thus alter our current understanding of the mechanisms underlying dark adaptation's neuroprotective effects in preventing blindness and require further study.


Subject(s)
Retina , Tomography, Optical Coherence , Humans , Animals , Mice , Dark Adaptation , Retina/diagnostic imaging , Face , Healthy Volunteers
6.
Cells ; 11(15)2022 07 22.
Article in English | MEDLINE | ID: mdl-35892562

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) evaluates the metabolic state of tissue based on reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD). Fluorescence lifetime imaging ophthalmoscopy (FLIO) can image the fundus of the eyes, but cannot detect NAD(P)H. We used multiphoton FLIM to study the metabolic state of the retina in fixed eyes of wild-type mice C57BL6/J. We sectioned the eye using a polyacrylamide gel-embedding technique and estimated the percentage of bound NAD(P)H. We found that oxidative phosphorylation was the predominant metabolic state, particularly in the inner retina, when a fixed retina was used. We also demonstrated the feasibility of FAD imaging of the retina. In addition, we demonstrated that autofluorescence and various FLIM channels, such as hemoglobin, melanin and collagen, can be used to evaluate the structure of the retina and other parts of the eye without any special staining.


Subject(s)
Flavin-Adenine Dinucleotide , NAD , Animals , Flavin-Adenine Dinucleotide/metabolism , Mice , Microscopy, Fluorescence , NAD/metabolism , Oxidative Phosphorylation , Retina/diagnostic imaging , Retina/metabolism
7.
Eur Heart J Case Rep ; 3(1): yty161, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31020237

ABSTRACT

BACKGROUND: Ectatic coronary segments are nidi for thrombus formation due to altered flow dynamics and stasis-an important component of Virchow's triad. Ectasia accompanied by an adjacent coronary stenosis with or without a plaque event can lead to acute myocardial infarctions complicated by huge thrombus burden. CASE SUMMARY: Here, we present a case of a young male with acute inferior wall myocardial infarction complicated by Type IV coronary artery ectasia of the right coronary artery and huge thrombus burden that was refractory to conventional methods of thrombus management like thrombo-suction and intracoronary cocktails including tenecteplase. After a stormy course of transient complete heart block and recurrent ventricular tachycardia, the thrombus was successfully extracted using a stent retriever to achieve thrombolysis in myocardial infarction (TIMI) II plus flow distally. The lesion just distal to the ectasia was stented 24 h later to achieve TIMI III flow and the patient had an uneventful recovery subsequently. DISCUSSION: Angiographically visible thrombus that is refractory to intracoronary medications and aspiration thrombectomy can be successfully managed using a stent retriever.

SELECTION OF CITATIONS
SEARCH DETAIL
...