Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Rev Cell Dev Biol ; 38: 447-466, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35767871

ABSTRACT

Organoids are miniaturized and simplified versions of an organ produced in vitro from stem or progenitor cells. They are used as a model system consisting of multiple cell types forming an architecture relevant to the organ and carrying out the function of the organ. They are a useful tool to study development, homeostasis, regeneration, and disease. The imaging of organoids has become a pivotal method to visualize and understand their self-organization, symmetry breaking, growth, differentiation, and function. In this review, we discuss imaging methods, how to analyze these images, and challenges in organoid research.


Subject(s)
Organoids , Stem Cells , Cell Differentiation
2.
Nat Commun ; 12(1): 3144, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035279

ABSTRACT

Human organogenesis remains relatively unexplored for ethical and practical reasons. Here, we report the establishment of a single-cell transcriptome atlas of the human fetal pancreas between 7 and 10 post-conceptional weeks of development. To interrogate cell-cell interactions, we describe InterCom, an R-Package we developed for identifying receptor-ligand pairs and their downstream effects. We further report the establishment of a human pancreas culture system starting from fetal tissue or human pluripotent stem cells, enabling the long-term maintenance of pancreas progenitors in a minimal, defined medium in three-dimensions. Benchmarking the cells produced in 2-dimensions and those expanded in 3-dimensions to fetal tissue identifies that progenitors expanded in 3-dimensions are transcriptionally closer to the fetal pancreas. We further demonstrate the potential of this system as a screening platform and identify the importance of the EGF and FGF pathways controlling human pancreas progenitor expansion.


Subject(s)
Cell Culture Techniques/methods , Organogenesis , Pancreas/embryology , Pluripotent Stem Cells/physiology , Tissue Culture Techniques/methods , Aborted Fetus , Animals , Cell Communication , Cell Differentiation , Cell Line , Datasets as Topic , Embryo, Mammalian , Epidermal Growth Factor/metabolism , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Humans , Mice , Pancreas/cytology , RNA-Seq , Signal Transduction/physiology , Single-Cell Analysis , Spheroids, Cellular , Transcriptome
3.
J Mol Med (Berl) ; 99(4): 449-462, 2021 04.
Article in English | MEDLINE | ID: mdl-33221939

ABSTRACT

Organoids constitute biological systems which are used to model organ development, homeostasis, regeneration, and disease in vitro and hold promise for use in therapy. Reflecting in vivo development, organoids form from tissue cells or pluripotent stem cells. Cues provided from the media and individual cells promote self-organization of these uniform starting cells into a structure, with emergent differentiated cells, morphology, and often functionality that resemble the tissue of origin. Therefore, organoids provide a complement to two-dimensional in vitro culture and in vivo animal models of development, providing the experimental control and flexibility of in vitro methods with the three-dimensional context of in vivo models, with fewer ethical restraints than human or animal work. However, using organoids, we are only just beginning to understand on the cellular level how the external conditions and signaling between individual cells promote the emergence of cells and structures. In this review, we focus specifically on organoids derived from endodermal tissues: the starting conditions of the cells, signaling mechanisms, and external media that allow the emergence of higher order self-organization.


Subject(s)
Endoderm/cytology , Organoids/cytology , Adult Stem Cells/cytology , Animals , Cell Communication , Cell Culture Techniques/methods , Cell Differentiation , Feedback, Physiological , Humans , Induced Pluripotent Stem Cells/cytology , Intestines/cytology , Mice , Morphogenesis , Organ Specificity , Organogenesis , Organoids/ultrastructure , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...