Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 355: 120348, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457889

ABSTRACT

Treatment of high-strength wastewater is critical for the aquatic environment and receiving water bodies around the globe. Untreated or partially treated high-strength wastewater may cause severe damage to the existing water bodies. Various high-rate anaerobic bioreactors have been developed in the last decades for treating high-strength wastewater. High-rate anaerobic bioreactors are effective in treating industrial wastewater and provide energy in the form of methane as well. However, the physical or chemical properties of high-strength industrial wastewater, sometimes, disrupt the functioning of a high-rate anaerobic bioreactor. For example, the disintegration of granular sludge in up flow anaerobic sludge blanket reactor or membrane blocking in an anaerobic membrane bioreactor are the results of a high-strength wastewater treatment which hamper the proper functioning and may harm the wastewater treatment plant economically. Biochar, if added to these bioreactors, may help to alleviate the ill-functioning of high-rate anaerobic bioreactors. The primary mechanisms by biochar work in these bioreactors are direct interspecies electron transfer, microbial immobilization, or gene level alternations in microbial structure. The present article explores and reviews the recent application of biochar in a high-rate anaerobic bioreactor treating high-strength industrial wastewater.


Subject(s)
Charcoal , Wastewater , Water Purification , Sewage/chemistry , Waste Disposal, Fluid/methods , Anaerobiosis , Bioreactors , Methane , Water
2.
Bioresour Technol ; 331: 125036, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33813164

ABSTRACT

Solid state anaerobic digestion (SSAD) of lignocellulosic biomass may be attractive solution for its valorisation. Compared to liquid state anaerobic digestion (LSAD), SSAD can handle higher organic loading rates (OLR), requires a less water and smaller reactor volume. It may require lower energy demand for heating or mixing and has higher volumetric methane productivity. Besides numerous benefits of SSAD processes and progress in system design, there are still obstacles, which need to be overcome for its successful implementations. This review aims to compile the recent trends in enhancing the bioconversion of agricultural stubbles in SSAD. Several pretreatment procedures used to breaking lignin and cellulose complex, method to overcome carbon to nitrogen ratio imbalance, use of carbon-based conducting materials to enhance Volatile Fatty Acids (VFA) conversion and additives for achieving nutrient balance will be discussed in this review. Leachate recirculation and its impacts on SSAD of agricultural stubbles are also discussed.


Subject(s)
Bioreactors , Methane , Anaerobiosis , Biofuels , Biomass , Lignin
SELECTION OF CITATIONS
SEARCH DETAIL
...