Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Exp Clin Cancer Res ; 43(1): 18, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200580

ABSTRACT

BACKGROUND: Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor prognoses and therapy resistance. However, MYC itself has been one of the most challenging targets for cancer treatment. Here, we identify a novel marinopyrrole natural derivative, MP1, that shows desirable anti-MYC and anti-cancer activities in MB. METHODS: In this study, using MYC-amplified (Group 3) and non-MYC amplified MB cell lines in vitro and in vivo, we evaluated anti-cancer efficacies and molecular mechanism(s) of MP1. RESULTS: MP1 significantly suppressed MB cell growth and sphere counts and induced G2 cell cycle arrest and apoptosis in a MYC-dependent manner. Mechanistically, MP1 strongly downregulated the expression of MYC protein. Our results with RNA-seq revealed that MP1 significantly modulated global gene expression and inhibited MYC-associated transcriptional targets including translation/mTOR targets. In addition, MP1 inhibited MYC-target metabolism, leading to declined energy levels. The combination of MP1 with an FDA-approved mTOR inhibitor temsirolimus synergistically inhibited MB cell growth/survival by downregulating the expression of MYC and mTOR signaling components. Our results further showed that as single agents, both MP1 and temsirolimus, were able to significantly inhibit tumor growth and MYC expression in subcutaneously or orthotopically MYC-amplified MB bearing mice. In combination, there were further anti-MB effects on the tumor growth and MYC expression in mice. CONCLUSION: These preclinical findings highlight the promise of marinopyrrole MP1 as a novel MYC inhibition approach for MYC-amplified MB.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Sirolimus/analogs & derivatives , Humans , Animals , Mice , Medulloblastoma/drug therapy , Medulloblastoma/genetics , G2 Phase Cell Cycle Checkpoints , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , TOR Serine-Threonine Kinases
2.
J Exp Clin Cancer Res ; 41(1): 321, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36357906

ABSTRACT

BACKGROUND: Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor clinical outcomes and respond poorly to current therapies. Epigenetic deregulation is very common in MYC-driven MB. The bromodomain extra-terminal (BET) proteins and histone deacetylases (HDACs) are epigenetic regulators of MYC transcription and its associated tumorigenic programs. This study aimed to investigate the therapeutic potential of inhibiting the BET proteins and HDACs together in MB. METHODS: Using clinically relevant BET inhibitors (JQ1 or OTX015) and a pan-HDAC inhibitor (panobinostat), we evaluated the effects of combined inhibition on cell growth/survival in MYC-amplified MB cell lines and xenografts and examined underlying molecular mechanism(s). RESULTS: Co-treatment of JQ1 or OTX015 with panobinostat synergistically suppressed growth/survival of MYC-amplified MB cells by inducing G2 cell cycle arrest and apoptosis. Mechanistic investigation using RNA-seq revealed that co-treatment of JQ1 with panobinostat synergistically modulated global gene expression including MYC/HDAC targets. SYK and MSI1 oncogenes were among the top 50 genes synergistically downregulated by JQ1 and panobinostat. RT-PCR and western blot analyses confirmed that JQ1 and panobinostat synergistically inhibited the mRNA and protein expression of MSI1/SYK along with MYC expression. Reduced SYK/MSI expression after BET (specifically, BRD4) gene-knockdown further confirmed the epigenetic regulation of SYK and MSI1 genes. In addition, the combination of OTX015 and panobinostat significantly inhibited tumor growth in MYC-amplified MB xenografted mice by downregulating expression of MYC, compared to single-agent therapy. CONCLUSIONS: Together, our findings demonstrated that dual-inhibition of BET and HDAC proteins of the epigenetic pathway can be a novel therapeutic approach against MYC-driven MB.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Mice , Animals , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Histone Deacetylases/metabolism , Nuclear Proteins/metabolism , Panobinostat/pharmacology , Panobinostat/therapeutic use , Azepines/pharmacology , Epigenesis, Genetic , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Transcription Factors/metabolism , Triazoles/pharmacology , Apoptosis , Cell Proliferation , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
3.
Pharmacol Res ; 178: 106144, 2022 04.
Article in English | MEDLINE | ID: mdl-35304260

ABSTRACT

The glutamate delta family of receptors is composed of GluD1 and GluD2 and serve as synaptic organizers. We have previously demonstrated several autism-like molecular and behavioral phenotypes including an increase in dendritic spines in GluD1 knockout mice. Based on previous reports we evaluated whether disruption of autophagy mechanisms may account for these phenotypes. Mouse model with conditional deletion of GluD1 from excitatory neurons in the corticolimbic regions was utilized. GluD1 loss led to overactive Akt-mTOR pathway, higher p62 and a lower LC3-II/LC3-I ratio in the somatosensory cortex suggesting reduced autophagy. Excitatory elements were increased in number but had immature phenotype based on puncta size, lower AMPA subunit GluA1 expression and impaired development switch from predominantly GluN2B to mixed GluN2A/GluN2B subunit expression. Overactive Akt-mTOR signaling and impaired autophagy was also observed in dorsal striatum upon conditional ablation of GluD1 and in the prefrontal cortex and hippocampus in constitutive knockout. Finally, cognitive deficits in novel object recognition test and fear conditioning were observed in mice with conditional ablation of GluD1 from the corticolimbic regions. Together, these results demonstrate a novel function of GluD1 in the regulation of autophagy pathway which may underlie autism phenotypes and is relevant to the genetic association of GluD1 coding, GRID1 gene with autism and other developmental disorders.


Subject(s)
Glutamic Acid , Receptors, Glutamate , Somatosensory Cortex , Animals , Autophagy , Mice , Mice, Knockout , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Somatosensory Cortex/metabolism , Synapses/physiology , TOR Serine-Threonine Kinases/metabolism
4.
Oncotarget ; 11(40): 3633-3645, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33088424

ABSTRACT

Intercellular communication between tumor cells within the hypoxic microenvironment promote aggressiveness and poor patient prognoses for reasons that remain unclear. Here we show that hypoxic Ewing's sarcoma (EWS) cells release exosomes that promote sphere formation, a stem-like phenotype, in EWS cells by enhancing survival. Analysis of the hypoxic exosomal miRNA cargo identified a HIF-1α regulated miRNA, miR-210, as a potential mediator of sphere formation in cells exposed to hypoxic exosomes. Knockdown of HIF-1α in hypoxic EWS cells led to decreased exosomal miR-210 levels and reduced the capacity of hypoxic exosomes to form spheres. Inhibition of miR-210 in hypoxic spheres attenuated sphere formation and overexpression of miR-210 in normoxic spheres significantly enhanced the number of EWS spheres. Our results indicate that hypoxic exosomal miR-210 targets the proapoptotic protein CASP8AP2 in recipient cells. Moreover, the suppression of CASP8AP2 led to a reduction in apoptotic cells and increased sphere formation. Together, the findings in this study suggest that hypoxic exosomes promote stemness in EWS cells by delivering enriched miR-210 that is capable of down-regulating apoptotic pathways, resulting in the survival of cells with increased sphere formation. Future studies will further investigate the effects of EWS derived exosomal miRNAs on target genes and the role these interactions play in driving aggressiveness in hypoxic EWS tumors.

5.
BMC Med Genomics ; 13(1): 87, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32591022

ABSTRACT

BACKGROUND: Medulloblastoma (MB) is one of the most common malignant cancers in children. MB is primarily classified into four subgroups based on molecular and clinical characteristics as (1) WNT (2) Sonic-hedgehog (SHH) (3) Group 3 (4) Group 4. Molecular characteristics used for MB classification are based on genomic and mRNAs profiles. MB subgroups share genomic and mRNA profiles and require multiple molecular markers for differentiation from each other. Long non-coding RNAs (lncRNAs) are more than 200 nucleotide long RNAs and primarily involve in gene regulation at epigenetic and post-transcriptional levels. LncRNAs have been recognized as diagnostic and prognostic markers in several cancers. However, the lncRNA expression profile of MB is unknown. METHODS: We used the publicly available gene expression datasets for the profiling of lncRNA expression across MB subgroups. Functional analysis of differentially expressed lncRNAs was accomplished by Ingenuity pathway analysis (IPA). RESULTS: In the current study, we have identified and validated the lncRNA expression profile across pediatric MB subgroups and associated molecular pathways. We have also identified the prognostic significance of lncRNAs and unique lncRNAs associated with each MB subgroup. CONCLUSIONS: Identified lncRNAs can be used as single biomarkers for molecular identification of MB subgroups that warrant further investigation and functional validation.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Medulloblastoma/genetics , Medulloblastoma/pathology , RNA, Long Noncoding/genetics , Adolescent , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Child , Child, Preschool , Female , Gene Expression Profiling , Humans , Infant , Infant, Newborn , Male , Prognosis , Survival Rate
6.
Mol Cancer Ther ; 19(6): 1351-1362, 2020 06.
Article in English | MEDLINE | ID: mdl-32371591

ABSTRACT

The MYC oncogene is frequently amplified in patients with medulloblastoma, particularly in group 3 patients, who have the worst prognosis. mTOR signaling-driven deregulated protein synthesis is very common in various cancers, including medulloblastoma, that can promote MYC stabilization. As a transcription factor, MYC itself is further known to regulate transcription of several components of protein synthesis machinery, leading to an enhanced protein synthesis rate and proliferation. Thus, inhibiting enhanced protein synthesis by targeting the MYC and mTOR pathways together may represent a highly relevant strategy for the treatment of MYC-driven medulloblastoma. Here, using siRNA and small-molecule inhibitor approaches, we evaluated the effects of combined inhibition of MYC transcription and mTOR signaling on medulloblastoma cell growth/survival and associated molecular mechanism(s) in MYC-amplified (group 3) medulloblastoma cell lines and xenografts. Combined inhibition of MYC and mTOR synergistically suppressed medulloblastoma cell growth and induced G1 cell-cycle arrest and apoptosis. Mechanistically, the combined inhibition significantly downregulated the expression levels of key target proteins of MYC and mTOR signaling. Our results with RNA-sequencing revealed that combined inhibition synergistically modulated global gene expression including MYC/mTOR components. In addition, the combination treatment significantly delayed tumor growth and prolonged survival of MYC-amplified medulloblastoma xenografted mice by downregulating expression of MYC and the key downstream components of mTOR signaling, compared with single-agent therapy. Together, our findings demonstrated that dual inhibition of MYC (transcription) and mTOR (translation) of the protein synthesis pathway can be a novel therapeutic approach against MYC-driven medulloblastoma.


Subject(s)
Azepines/pharmacology , Cerebellar Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Imidazoles/pharmacology , Medulloblastoma/drug therapy , Protein Biosynthesis/drug effects , Proto-Oncogene Proteins c-myc/metabolism , Quinolines/pharmacology , Triazoles/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Cycle , Cell Proliferation , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Female , Humans , Medulloblastoma/metabolism , Medulloblastoma/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Proto-Oncogene Proteins c-myc/genetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Sci Rep ; 10(1): 1066, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974431

ABSTRACT

Invasive candidiasis (IC) is the most common nosocomial infection and a leading cause of mycoses-related deaths. High-systemic toxicity and emergence of antifungal-resistant species warrant the development of newer preventive approaches against IC. Here, we have adopted an immunotherapeutic peptide vaccine-based approach, to enhance the body's immune response against invasive candida infections. Using computational tools, we screened the entire candida proteome (6030 proteins) and identified the most immunodominant HLA class I, HLA class II and B- cell epitopes. By further immunoinformatic analyses for enhanced vaccine efficacy, we selected the 18- most promising epitopes, which were joined together using molecular linkers to create a multivalent recombinant protein against Candida albicans (mvPC). To increase mvPC's immunogenicity, we added a synthetic adjuvant (RS09) to the mvPC design. The selected mvPC epitopes are homologous against all currently available annotated reference sequences of 22 C. albicans strains, thus offering a higher coverage and greater protective response. A major advantage of the current vaccine approach is mvPC's multivalent nature (recognizing multiple-epitopes), which is likely to provide enhanced protection against complex candida antigens. Here, we describe the computational analyses leading to mvPC design.


Subject(s)
Candida albicans/immunology , Candidiasis/prevention & control , Fungal Vaccines/immunology , Candida albicans/genetics , Candidiasis/genetics , Candidiasis/immunology , Candidiasis/microbiology , Computational Biology , Computer Simulation , Drug Design , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Fungal Vaccines/administration & dosage , Fungal Vaccines/genetics , Humans , Vaccines, Subunit
8.
BMC Cancer ; 19(1): 1056, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31694585

ABSTRACT

BACKGROUND: MYC amplification or overexpression is common in Group 3 medulloblastoma and is associated with the worst prognosis. Recently, protein arginine methyl transferase (PRMT) 5 expression has been closely associated with aberrant MYC function in various cancers, including brain tumors such as glioblastoma. However, the role of PRMT5 and its association with MYC in medulloblastoma have not been explored. Here, we report the role of PRMT5 as a novel regulator of MYC and implicate PRMT5 as a potential therapeutic target in MYC-driven medulloblastoma. METHODS: Expression and association between PRMT5 and MYC in primary medulloblastoma tumors were investigated using publicly available databases. Expression levels of PRMT5 protein were also examined using medulloblastoma cell lines and primary tumors by western blotting and immunohistochemistry, respectively. Using MYC-driven medulloblastoma cells, we examined the physical interaction between PRMT5 and MYC by co-immunoprecipitation and co-localization experiments. To determine the functional role of PRMT5 in MYC-driven medulloblastoma, PRMT5 was knocked-down in MYC-amplified cells using siRNA and the consequences of knockdown on cell growth and MYC expression/stability were investigated. In vitro therapeutic potential of PRMT5 in medulloblastoma was also evaluated using a small molecule inhibitor, EPZ015666. RESULTS: We observed overexpression of PRMT5 in MYC-driven primary medulloblastoma tumors and cell lines compared to non-MYC medulloblastoma tumors and adjacent normal tissues. We also found that high expression of PRMT5 is inversely correlated with patient survival. Knockdown of PRMT5 using siRNA in MYC-driven medulloblastoma cells significantly decreased cell growth and MYC expression. Mechanistically, we found that PRMT5 physically associated with MYC by direct protein-protein interaction. In addition, a cycloheximide chase experiment showed that PRMT5 post-translationally regulated MYC stability. In the context of therapeutics, we observed dose-dependent efficacy of PRMT5 inhibitor EPZ015666 in suppressing cell growth and inducing apoptosis in MYC-driven medulloblastoma cells. Further, the expression levels of PRMT5 and MYC protein were downregulated upon EPZ015666 treatment. We also observed a superior efficacy of this inhibitor against MYC-amplified medulloblastoma cells compared to non-MYC-amplified medulloblastoma cells, indicating specificity. CONCLUSION: Our results reveal the regulation of MYC oncoprotein by PRMT5 and suggest that targeting PRMT5 could be a potential therapeutic strategy for MYC-driven medulloblastoma.


Subject(s)
Cerebellar Neoplasms/metabolism , Medulloblastoma/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Humans , Isoquinolines/pharmacology , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Protein Binding , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/genetics , Proto-Oncogene Proteins c-myc/genetics , Pyrimidines/pharmacology , RNA Interference , Survival Analysis
9.
Vaccine ; 37(26): 3457-3463, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31097352

ABSTRACT

In kidney transplant recipients (KTRs) long-term immunosuppression leads to BK virus (BKV) reactivation, with an increased incidence of BKV-associated pathologies and allograft rejection. The current approaches to limit BKV infection include a reduction in immunosuppression and use of anti-BKV drugs, which are clinically sub-optimal and lead to undesirable therapeutic outcomes. Here, we adopted an immune-based approach to augment the endogenous BKV specific T-cells. Using reverse vaccinology based in silico analyses, we designed a peptide-based multi-epitope vaccine for BKV (MVBKV). A major advantage of our approach is that the selected epitopes show an affinity towards all the 12 superfamilies of HLA class I alleles and 27 reference alleles of HLA class II. This suggests MVBKV's universal nature and its potential effectiveness in a wide-population base. To improve MVBKV's immunogenic properties, a synthetic Toll-like Receptor (TLR) 4 peptide ligand (RS09) was added to the final vaccine construct. The sequences of the individual epitopes were molecularly linked to form a 3D-stable synthetic protein. Overall, our immunoinformatic-based approach led to the design of a new MVBKV vaccine, which remains to be validated experimentally.


Subject(s)
BK Virus/immunology , Polyomavirus Infections/immunology , Epitopes/immunology , Humans , Immunosuppression Therapy/methods , Immunosuppressive Agents/immunology , Kidney Transplantation/methods , Tumor Virus Infections/immunology
10.
Oncotarget ; 9(24): 16619-16633, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29682173

ABSTRACT

Aberrant activation and interactions of hedgehog (HH) and PI3K/AKT/mTOR signaling pathways are frequently associated with high-risk medulloblastoma (MB). Thus, combined targeting of the HH and PI3K/AKT/mTOR pathways could be a viable therapeutic strategy to treat high-risk patients. Therefore, we investigated the anti-MB efficacies of combined HH inhibitor Vismodegib and PI3K-mTOR dual-inhibitor BEZ235 together or combined individually with cisplatin against high-risk MB. Using non-MYC- and MYC-amplified cell lines, and a xenograft mouse model, the in vitro and in vivo efficacies of these therapies on cell growth/survival and associated molecular mechanism(s) were investigated. Results showed that combined treatment of Vismodegib and BEZ235 together, or with cisplatin, significantly decreased MB cell growth/survival in a dose-dependent-fashion. Corresponding changes in the expression of targeted molecules following therapy were observed. Results demonstrated that inhibitors not only suppressed MB cell growth/survival when combined, but also significantly enhanced cisplatin-mediated cytotoxicity. Of these combinations, BEZ235 exhibited a significantly greater efficacy in enhancing cisplatin-mediated MB cytotoxicity. Results also demonstrated that the MYC-amplified MB lines showed a higher sensitivity to combined therapies compared to non-MYC-amplified cell lines. Therefore, we tested the efficacy of combined approaches against MYC-amplified MB growing in NSG mice. In vivo results showed that combination of Vismodegib and BEZ235 or their combination with cisplatin, significantly delayed MB tumor growth and increased survival of xenografted mice by targeting HH and mTOR pathways. Thus, our studies lay a foundation for translating these combined therapeutic strategies to the clinical setting to determine their efficacies in high-risk MB patients.

11.
PLoS One ; 12(8): e0182828, 2017.
Article in English | MEDLINE | ID: mdl-28837672

ABSTRACT

Although diabetes mellitus (DM) causes cardiomyopathy and exacerbates heart failure, the underlying molecular mechanisms for diabetic cardiomyopathy/heart failure are poorly understood. Insulin2 mutant (Ins2+/-) Akita is a mouse model of T1DM, which manifests cardiac dysfunction. However, molecular changes at cardiac transcriptome level that lead to cardiomyopathy remain unclear. To understand the molecular changes in the heart of diabetic Akita mice, we profiled cardiac transcriptome of Ins2+/- Akita and Ins2+/+ control mice using next generation sequencing (NGS) and microarray, and determined the implications of differentially expressed genes on various heart failure signaling pathways using Ingenuity pathway (IPA) analysis. First, we validated hyperglycemia, increased cardiac fibrosis, and cardiac dysfunction in twelve-week male diabetic Akita. Then, we analyzed the transcriptome levels in the heart. NGS analyses on Akita heart revealed 137 differentially expressed transcripts, where Bone Morphogenic Protein-10 (BMP10) was the most upregulated and hairy and enhancer of split-related (HELT) was the most downregulated gene. Moreover, twelve long non-coding RNAs (lncRNAs) were upregulated. The microarray analyses on Akita heart showed 351 differentially expressed transcripts, where vomeronasal-1 receptor-180 (Vmn1r180) was the most upregulated and WD Repeat Domain 83 Opposite Strand (WDR83OS) was the most downregulated gene. Further, miR-101c and H19 lncRNA were upregulated but Neat1 lncRNA was downregulated in Akita heart. Eleven common genes were upregulated in Akita heart in both NGS and microarray analyses. IPA analyses revealed the role of these differentially expressed genes in key signaling pathways involved in diabetic cardiomyopathy. Our results provide a platform to initiate focused future studies by targeting these genes and/or non-coding RNAs, which are differentially expressed in Akita hearts and are involved in diabetic cardiomyopathy.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Gene Expression Profiling , Myocardium/metabolism , Oligonucleotide Array Sequence Analysis , Transcriptome , Animals , High-Throughput Nucleotide Sequencing , Male , Mice
12.
Mol Pharmacol ; 90(2): 96-105, 2016 08.
Article in English | MEDLINE | ID: mdl-27231330

ABSTRACT

The delta family of ionotropic glutamate receptors consists of glutamate delta-1 (GluD1) and glutamate delta-2 receptors. We have previously shown that GluD1 knockout mice exhibit features of developmental delay, including impaired spine pruning and switch in the N-methyl-D-aspartate receptor subunit, which are relevant to autism and other neurodevelopmental disorders. Here, we identified a novel role of GluD1 in regulating metabotropic glutamate receptor 5 (mGlu5) signaling in the hippocampus. Immunohistochemical analysis demonstrated colocalization of mGlu5 with GluD1 punctas in the hippocampus. Additionally, GluD1 protein coimmunoprecipitated with mGlu5 in the hippocampal membrane fraction, as well as when overexpressed in human embryonic kidney 293 cells, demonstrating that GluD1 and mGlu5 may cooperate in a signaling complex. The interaction of mGlu5 with scaffold protein effector Homer, which regulates mechanistic target of rapamycin (mTOR) signaling, was abnormal both under basal conditions and in response to mGlu1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in GluD1 knockout mice. The basal levels of phosphorylated mTOR and protein kinase B, the signaling proteins downstream of mGlu5 activation, were higher in GluD1 knockout mice, and no further increase was induced by DHPG. We also observed higher basal protein translation and an absence of DHPG-induced increase in GluD1 knockout mice. In accordance with a role of mGlu5-mediated mTOR signaling in synaptic plasticity, DHPG-induced internalization of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits was impaired in the GluD1 knockout mice. These results demonstrate that GluD1 interacts with mGlu5, and loss of GluD1 impairs normal mGlu5 signaling potentially by dysregulating coupling to its effector. These studies identify a novel role of the enigmatic GluD1 subunit in hippocampal function.


Subject(s)
Hippocampus/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, Glutamate/metabolism , Animals , Gene Deletion , Immunoprecipitation , Mice, Knockout , Models, Biological , Phosphorylation , Protein Binding , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
13.
Front Physiol ; 6: 124, 2015.
Article in English | MEDLINE | ID: mdl-25954207

ABSTRACT

Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD) leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however underlying molecular mechanisms are poorly understood. Increased inflammation due to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α) and attenuation of anti-inflammatory cytokine such as interleukin 10 (IL-10) contributes to cardiac dysfunction in obese and diabetics. We hypothesized that exercise training ameliorates HFD- induced cardiac dysfunction by mitigating obesity and inflammation through upregulation of IL-10 and downregulation of TNF-α. To test this hypothesis, 8 week old, female C57BL/6J mice were fed with HFD and exercised (swimming 1 h/day for 5 days/week for 8 weeks). The four treatment groups: normal diet (ND), HFD, HFD + exercise (HFD + Ex) and ND + Ex were analyzed for mean body weight, blood glucose level, TNF-α, IL-10, cardiac fibrosis by Masson Trichrome, and cardiac dysfunction by echocardiography. Mean body weights were increased in HFD but comparatively less in HFD + Ex. The level of TNF-α was elevated and IL-10 was downregulated in HFD but ameliorated in HFD + Ex. Cardiac fibrosis increased in HFD and was attenuated by exercise in the HFD + Ex group. The percentage ejection fraction and fractional shortening were decreased in HFD but comparatively increased in HFD + Ex. There was no difference between ND and ND + Ex for the above parameters except an increase in IL-10 level following exercise. Based on these results, we conclude that exercise mitigates HFD- induced cardiomyopathy by decreasing obesity, inducing IL-10, and reducing TNF-α in mice.

14.
Mol Cell Biochem ; 404(1-2): 241-50, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25763715

ABSTRACT

An elevated level of homocysteine called hyperhomocysteinemia (HHcy) is associated with pathological cardiac remodeling. Hydrogen sulfide (H2S) acts as a cardioprotective gas; however, the mechanism by which H2S mitigates homocysteine-mediated pathological remodeling in cardiomyocytes is unclear. We hypothesized that H2S ameliorates HHcy-mediated hypertrophy by inducing cardioprotective miR-133a in cardiomyocytes. To test the hypothesis, HL1 cardiomyocytes were treated with (1) plain medium (control, CT), (2) 100 µM of homocysteine (Hcy), (3) Hcy with 30 µM of H2S (Hcy + H2S), and (4) H2S for 24 h. The levels of hypertrophy markers: c-fos, atrial natriuretic peptide (ANP), and beta-myosin heavy chain (ß-MHC), miR-133a, and its transcriptional inducer myosin enhancer factor-2C (MEF2C) were determined by Western blotting, RT-qPCR, and immunofluorescence. The activity of MEF2C was assessed by co-immunoprecipitation of MEF2C with histone deacetylase-1(HDAC1). Our results show that H2S ameliorates homocysteine-mediated up-regulation of c-fos, ANP, and ß-MHC, and down-regulation of MEF2C and miR-133a. HHcy induces the binding of MEF2C with HDAC1, whereas H2S releases MEF2C from MEF2C-HDAC1 complex causing activation of MEF2C. These findings elicit that HHcy induces cardiac hypertrophy by promoting MEF2C-HDAC1 complex formation that inactivates MEF2C causing suppression of anti-hypertrophy miR-133a in cardiomyocytes. H2S mitigates hypertrophy by inducing miR-133a through activation of MEF2C in HHcy cardiomyocytes. To our knowledge, this is a novel mechanism of H2S-mediated activation of MEF2C and induction of miR-133a and inhibition of hypertrophy in HHcy cardiomyocytes.


Subject(s)
Hydrogen Sulfide/administration & dosage , Hyperhomocysteinemia/genetics , MicroRNAs/biosynthesis , Animals , Gene Expression Regulation/drug effects , Homocysteine/administration & dosage , Humans , Hyperhomocysteinemia/pathology , MEF2 Transcription Factors/biosynthesis , MEF2 Transcription Factors/genetics , Mice , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Ventricular Remodeling/genetics
15.
Neurosci Lett ; 576: 45-50, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24905175

ABSTRACT

Fasudil (HA-1077), a specific Rho kinase II (ROCKII) inhibitor, is in clinical trials for recovery from spinal cord injury (SCI). The primary role of Fasudil is in axonal regeneration, as it inhibits ROCKII, the key signaling molecule involved in collapse of axon growth cone. Astrogliosis, due to the activation of astrocytes is an indicator of CNS injury. In early stages of injury, GFAP expression increases, helping to restore the integrity of the CNS. An increase in GFAP expression is also a marker of astrogliosis. Thus, reducing GFAP and hence astrogliosis at later stages of SCI is important for neuroregeneration and functional recovery. CoCl2 was used to induce hypoxic injury in astrocytic cell lines A172 (24h) and in spinal cord dorsal column white matter (8h). Several different techniques were used to study the changes in GFAP expression such as real-time PCR, western blotting and immunofluorescence staining with confocal microscopy. Hypoxia increased the expression of GFAP in A172 cells and in the spinal cord dorsal column after CoCl2 (100µM) treatment for 24h and 8h, respectively. We observed 11 folds increase in protein expression in A172 cells (24h) and 4.5 folds in spinal cord dorsal column (8h). The RNA expression was increased 3 folds in A172 cells after 24h of treatment and 4 folds in spinal cord dorsal column after 8h of treatment with 100µM CoCl2. Treatment with fasudil (20µM) significantly reduces the expression of GFAP in A172 cells and in spinal cord dorsal column. Fasudil also decreased activation of NF-κB in A172 cells after hypoxic injury. In the present study, we observed that fasudil reduces the expression of GFAP (consequently, astrogliosis) after hypoxic injury to A172 cells and spinal cord dorsal column. Our studies demonstrate that fasudil also plays a role in GFAP expression by reducing NF-κB activation at the injury site which could further help in axonal regeneration.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Glial Fibrillary Acidic Protein/metabolism , Reperfusion Injury/drug therapy , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Cell Hypoxia , Cell Line, Tumor , Cobalt/pharmacology , Gliosis , Humans , Male , Rats, Wistar , Reperfusion Injury/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism
16.
Neurol Res ; 34(5): 504-11, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22643045

ABSTRACT

OBJECTIVE: Calcium overloading is responsible for initiating the cell death in neuronal tissue after hypoxic injury. Inositol 1,4,5-triphosphate receptors (IP3Rs) is an important calcium channel which regulates cellular calcium homeostasis. IP3R1 is widely expressed in brain and spinal tissue. In the present study, we have studied the regulation of IP3R1 in hypoxic/reperfusion injury of spinal cord dorsal column in vitro. METHODS: Dorsal columns were isolated from the spinal cord of adult rats and injury was induced by exposing to hypoxic condition for 1 hour. After injury, reperfusion was carried out for 0, 2, 4, and 8 hours. Tissues were collected and processed for western blotting, immunohistochemistry and real-time PCR. RESULTS: In the present study, we have found increased expression of IP3R1 after hypoxic/reperfusion injury of spinal cord dorsal column in vitro. Maximum expression of IP3R1 has been seen at 4 hours after hypoxia. Double immunofluorescence studies show the localization of IP3R1 in axons and astrocytes. Further identifying the signaling pathway involved in the regulation, we found Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-62 and c-Jun N-terminal kinase (JNK) inhibitor SP600125 reduced the expression of IP3R1 suggesting the role of CaMKII and JNK in the regulation of IP3R1 expression. We did not find role of ERK and p38 in the regulation IP3R1 expression in hypoxic/reperfusion injury of dorsal column in vitro. DISCUSSION: The result presented in this study showed that IP3R1 expression is increased in hypoxic/reperfusion injury of spinal cord white matter and it is regulated by the CaMKII-JNK pathway.


Subject(s)
Gene Expression Regulation/physiology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Ischemia/complications , Leukoencephalopathies/etiology , Reperfusion Injury/complications , Spinal Cord/metabolism , Analysis of Variance , Animals , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/metabolism , In Vitro Techniques , Inositol 1,4,5-Trisphosphate Receptors/genetics , Male , Neurofilament Proteins/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Spinal Cord/drug effects , Spinal Cord/pathology , Time Factors
17.
J Neurotrauma ; 29(6): 1255-65, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-21612318

ABSTRACT

Calcium influx into cells is responsible for initiating the cell death in neuronal tissue after hypoxic injury. Changes in intracellular calcium with subsequent increased expression of ryanodine receptor 2 (RyR2) are hypothesized to cause cell death after hypoxic injury. In the present study we have examined the time-dependent changes of RyR2 expression in hypoxic/reperfusion injury of spinal cord dorsal column. In this study we used western blotting, real time PCR (RT-PCR) and immunohistochemistry to examine changes in protein and gene expression of RyR2 after spinal cord injury (SCI) in the rat. Quantitative immunoblotting showed increase in the expression of RyR2 at 4 h during hypoxic/reperfusion injury of dorsal column. Moreover, RT-PCR showed 36-fold increases in mRNA of RyR2 after 4 h of hypoxic injury of white matter. By double immunofluorescence staining, RyR2 was localized on axons and astrocytes in the white matter of the spinal cord. After treatment with KN-62; (inhibitor of CaMKII) and SP600125 (inhibitor of JNK), there is a significant reduction in the expression of RyR2, indicating the role of these molecules in RyR2 regulation. Further removal of extracellular calcium does not have significant effect on RyR2 expression and phosphorylation of CaMKII, which was further confirmed by treatment with intracellular Ca(++) chelator BAPTA-AM. Finally, bioassay with quantitative analysis showed that treatment with inhibitor significantly reduced the cellular oxidative stress suggesting RyR2 is responsible for increased cellular oxidative load. In summary, we provide evidence that RyR2 gene and protein expression in astrocyte and axons is markedly increased after hypoxic injury. Further CaMKII/JNK pathway upregulates RyR2 expression after hypoxic injury. Therefore we propose that inhibitors of CaMKII/JNK pathway would reduce the cellular oxidative load and thereby have a neuroprotective role.


Subject(s)
Cell Hypoxia/physiology , Reperfusion Injury/metabolism , Ryanodine Receptor Calcium Release Channel/biosynthesis , Spinal Cord/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Hypoxia/drug effects , Enzyme Inhibitors/pharmacology , Fluorescent Antibody Technique , Gene Expression Regulation , Immunohistochemistry , MAP Kinase Signaling System/physiology , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Wistar , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Signal Transduction/physiology , Spinal Cord/pathology , Spinal Cord/physiopathology , Up-Regulation
18.
Brain Behav ; 1(2): 87-94, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22399088

ABSTRACT

The detrimental effects of hypoxic damage to central nervous system lead to energy depletion, free radical formation, lipid peroxidation (LPO), and increased calcium. We hypothesized that in vitro tacrolimus (FK-506) and cyclosporine A (CsA) could be protective against hypoxic damage in spinal cord. Dorsal columns were isolated from the spinal cord of adult rats and injured by exposure to hypoxic condition for 1 h, and treated with FK-506 (0.1 µM) and CsA (0.1 µM). After injury, reperfusion was carried out for 2 h. Tissues were collected, processed for biochemical assays, and 2,3,5-triphenyltetrazolium chloride (TTC) staining. Spinal cord hypoxia caused a significant decrease (P < 0.001) in mitochondrial ATP (30.64%) and tissue reduced glutathione (GSH) (60.14%) content. Conversely, a significant increase (P < 0.001) in tissue LPO level (57.77%) and myeloperoxidase (MPO) activity (461.24%) was observed in hypoxic group. Mitochondrial swelling was also significantly increased in hypoxic group (90.0%). Treatment with either FK-506 or CsA showed that significant neuroprotective effects (P < 0.05-0.01) were measured in various parameters in hypoxic groups. FK-506 and CsA treatment showed increase in ATP by 11.19% and 16.14% while GSH content increased by 66.46% and 77.32%, respectively. Conversely, LPO content decreased by 18.97% and 24.06% and MPO level by 42.86% and 18.66% after FK-506 and CsA treatment. Calcium uptake was also decreased in mitochondria as exhibited by the increase in absorbance by 11.19% after FK-506 treatment. TTC staining also showed increased viability after FK-506 and CsA treatment. In conclusion, present study demonstrates the neuroprotective effect of FK-506 and CsA treatment against spinal cord hypoxia induced damage is mediated via their antioxidant actions.

19.
Int Immunopharmacol ; 7(11): 1403-13, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17761344

ABSTRACT

In the present study we report the activation of murine peritoneal macrophages in vitro on treatment with Concanavalin A (ConA). ConA (10 microg/ml) treatment of macrophages resulted in the transcription of IL-1beta gene at 16 h and maximum production of IL-1beta at 24 h. To investigate the signaling molecules involved in the production of IL-1beta different pharmacological inhibitors were used. It was observed that genestein, wortmannin, H-7, TMB-8, PD98059, SB202190, and tyrophostin (AG490) down regulated the expression of IL-1beta. These observations suggested the involvement of tyrosine kinase, PI3 kinase, protein kinase C, p42/44, p38, Ca(++) and JAK2 signaling molecules in ConA induced production of IL-1beta by macrophages. Maximum protein tyrosine kinase activity and expression of PI3K in macrophages was seen at 5 min, PKC activity and Ca(++) release was found at 10 min after ConA treatment. Maximum expression of phospho-JAK2 at 2.5-5 min, phospho-p42/44 at 5-60 min, phospho-p38 at 15-30 min, phospho-IkappaB and phospho-Stat1 at 30-60 min and phospho-ELK1, c-Fos, phospho-Stat3 at 60 min of ConA treatment was observed. Pharmacological inhibitors were also used to check the cascade of activation of tyrosine kinase, PKC, PI3 kinase, p42/44, p38, JAK kinase and release of Ca(++) from intracellular storage to sort out the signaling pathways involved in the release of IL-1beta by macrophages on treatment with ConA in vitro.


Subject(s)
Concanavalin A/pharmacology , Interleukin-1beta/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Animals , Calcium/metabolism , Female , Gene Expression Regulation , Janus Kinase 2/metabolism , Macrophage Activation , Male , Mice , Mice, Inbred BALB C , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C/metabolism , Signal Transduction , Transcription Factors/metabolism
20.
Glycoconj J ; 24(9): 573-82, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17668318

ABSTRACT

Treatment of macrophages with various doses of wheat germ agglutinin (WGA) for different time intervals resulted in enhanced expression of TNF-alpha, IL-1beta, IL-12 and IFN-gamma. The maximum expressions were observed at 24 h with 100 ng/ml of WGA. Enhanced transcription of cytokines TNF-alpha, IL-1beta, IL-12, and IFN-gamma was observed at 16 h of WGA treatment by RT-PCR. Pharmacological inhibitor of tyrosine kinase, PI3 kinase, protein kinase C, p42/44, p38, JNK and intracellular calcium immobilizing agent down regulated the WGA induced expression of cytokines TNF-alpha, IL-1beta, IL-12 and IFN-gamma. Maximum protein tyrosine kinase activity in macrophages was seen at 5 min of WGA treatment. Maximum cytosolic Ca++ was observed at 10 min of WGA treatment. WGA treated macrophages showed maximum activation of protein kinase C (PKC) and PI3 kinase at 10 min, p42/44, p38 at 15 min and JNK at 30 min. Transcription factor ELK1 was activated at 60 min and IêB, c-Fos and c-Jun at 30 min of WGA treatment. The pharmacological inhibitors were also used to check the cascade of activation of tyrosine kinase, PKC, PI3 kinase, p42/44, p38, JNK and release of calcium from intracellular storage to sort out the signal pathways involved in the release of TNF-alpha, IL-1beta, IL-12, and IFN-gamma by macrophages on treatment with WGA in vitro.


Subject(s)
Interferon-gamma/biosynthesis , Interleukin-12/biosynthesis , Interleukin-1beta/biosynthesis , Macrophages, Peritoneal/metabolism , Protein-Tyrosine Kinases/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Wheat Germ Agglutinins/metabolism , Animals , Female , Gene Expression Regulation , Kinetics , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Models, Biological , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...