Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Syst Man Cybern B Cybern ; 40(2): 444-57, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19674955

ABSTRACT

For distributed detection in a wireless sensor network, sensors arrive at decisions about a specific event that are then sent to a central fusion center that makes global inference about the event. For such systems, the determination of the decision thresholds for local sensors is an essential task. In this paper, we study the distributed detection problem and evaluate the sensor thresholds by formulating and solving a multiobjective optimization problem, where the objectives are to minimize the probability of error and the total energy consumption of the network. The problem is investigated and solved for two types of fusion schemes: 1) parallel decision fusion and 2) serial decision fusion. The Pareto optimal solutions are obtained using two different multiobjective optimization techniques. The normal boundary intersection (NBI) method converts the multiobjective problem into a number of single objective-constrained subproblems, where each subproblem can be solved with appropriate optimization methods and nondominating sorting genetic algorithm-II (NSGA-II), which is a multiobjective evolutionary algorithm. In our simulations, NBI yielded better and evenly distributed Pareto optimal solutions in a shorter time as compared with NSGA-II. The simulation results show that, instead of only minimizing the probability of error, multiobjective optimization provides a number of design alternatives, which achieve significant energy savings at the cost of slightly increasing the best achievable decision error probability. The simulation results also show that the parallel fusion model achieves better error probability, but the serial fusion model is more efficient in terms of energy consumption.

2.
Appl Opt ; 45(28): 7401-9, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16983430

ABSTRACT

Digital page-oriented volume holographic memory (POVHM) is a promising candidate for next-generation ultrahigh capacity optical data storage technology. As the capacity of the POVHMs increases, the bit error rate performance of the system is degraded due to increased interpixel interference (IPI) and noise. To improve the system performance under these adverse effects and to increase the capacity, joint iterative soft equalization-detection and error correction decoding might be attractive. To address that, by considering the nonlinearity inherent in the channel, an iterative soft equalization method that is optimized in the minimum mean-square error (MMSE) sense, called the iterative soft-MMSE (ISMMSE) equalization, is devised. The performance of the ISMMSE is evaluated by use of numerical experiments under different amounts of IPI and optical noise. Simulation results suggest that the ISMMSE is a good candidate for an ultrahigh capacity POVHM, which employs joint iterative equalization-detection and decoding.

3.
Appl Opt ; 43(6): 1368-78, 2004 Feb 20.
Article in English | MEDLINE | ID: mdl-15008543

ABSTRACT

As storage density increases, the performance of volume holographic storage channels is degraded, because intersymbol interference and noise also increase. Equalization and detection methods must be employed to mitigate the effects of intersignal interference and noise. However, the output detector array in a holographic storage system detects the intensity of the incident light's wave front, leading to loss of sign information. This sign loss precludes the applicability of conventional equalization and detection schemes. We first address channel modeling under quadratic nonlinearity and develop an efficient model named the discrete magnitude-squared channel model. We next introduce an advanced equalization method called the iterative magnitude-squared decision feedback equalization (IMSDFE), which takes the channel nonlinearity into account. The performance of IMSDFE is quantified for optical-noise-dominated channels as well as for electronic-noise-dominated channels. Results indicate that IMSDFE is a good candidate for a high-density, high-intersignal-interference volume holographic storage channel.

SELECTION OF CITATIONS
SEARCH DETAIL
...