Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 249: 104047, 2022 08.
Article in English | MEDLINE | ID: mdl-35841848

ABSTRACT

Millions of tonnes of coarse tailings sand are produced every year as a byproduct of the bitumen extraction process in the Athabasca Oil Sands Region. These tailings materials contain residual quantities of mobile solutes, which can be transported through groundwater to downgradient terrestrial and aquatic ecosystems. The anticipated ubiquity of coarse tailings sand on the post-mined landscape necessitates the characterization of its hydraulic and transport properties. Hydraulic conductivity and dispersivity was evaluated at multiple scales, and included the first field-scale tracer test conducted in a tailings sand aquifer. Average hydraulic conductivity derived using laboratory cores, single-well response tests, and the tracer test were 3.2 m d-1, 2.9 m d-1, and 3.4 m d-1, respectively. These measurements demonstrated close agreement and were consistent with expectations of a material that experiences some grain-size segregation and homogenization due to the oil sands process and the nature of deposition. The field-scale tracer test appeared to obtain the asymptotic dispersivity of the coarse tailings sand aquifer, reaching a maximum value of 0.5 m after 18 m of displacement. Coarse tailings in the oil sands that experience similar processes of segregation, settling, and deposition on the reclamation landscape could be expected to have similar hydraulic properties.


Subject(s)
Groundwater , Oil and Gas Fields , Ecosystem , Mining
2.
Sci Total Environ ; 630: 1553-1564, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29554772

ABSTRACT

Post-mine landscape reclamation of the Athabasca Oil Sands Region requires the use of tailings sand, an abundant mine-waste material that often contains large amounts of sodium (Na+). Due to the mobility of Na+ in groundwater and its effects on vegetation, water quality is a concern when incorporating mine waste materials, especially when attempting to construct groundwater-fed peatlands. This research is the first published account of Na+ redistribution in groundwater from a constructed tailings sand upland to an adjacent constructed fen peat deposit (Nikanotee Fen). A permeable petroleum coke layer underlying the fen, extending partway into the upland, was important in directing flow and Na+ beneath the peat, as designed. Initially, Na+ concentration was highest in the tailings sand (average of 232mgL-1) and lowest in fen peat (96mgL-1). Precipitation-driven recharge to the upland controlled the mass flux of Na from upland to fen, which ranged from 2 to 13tons Na+ per year. The mass flux was highest in the driest summer, in part from dry-period flowpaths that direct groundwater with higher concentrations of Na+ into the coke layer, and in part because of the high evapotranspiration loss from the fen in dry periods, which induces upward water flow. With the estimated flux rates of 336mmyr-1, the Na+ arrival time to the fen surface was estimated to be between 4 and 11years. Over the four-year study, average Na+ concentrations within the fen rooting zone increased from 87 to 200mgL-1, and in the tailings sand decreased to 196mgL-1. The planting of more salt-tolerant vegetation in the fen is recommended, given the potential for Na+ accumulation. This study shows reclamation designs can use layered flow system to control the rate, pattern, and timing of solute interactions with surface soil systems.

3.
Sci Total Environ ; 603-604: 593-605, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28646778

ABSTRACT

Mine reclamation requires the reconstruction of entire landforms and drainage systems. The hydrological regime of reclaimed landscapes will be a manifestation of the processes operating within the individual landforms that comprise it. Hydrology is the most important process regulating wetland function and development, via strong controls on chemical and biotic processes. Accordingly, this research addresses the growing and immediate need to understand the hydrological processes that operate within reconstructed landscapes following resource extraction. In this study, the function of a constructed fen watershed (the Nikanotee Fen watershed) is evaluated for the first two years following construction (2013-2014) and is assessed and discussed within the context of the construction-level design. The system design was capable of sustaining wet conditions within the Nikanotee Fen during the snow-free period in 2013 and 2014, with persistent ponded water in some areas. Evapotranspiration dominated the water fluxes from the system. These losses were partially offset by groundwater discharge from the upland aquifer, which demonstrated strong hydrologic connectivity with the fen in spite of most construction materials having lower than targeted saturated hydraulic conductivities. However, the variable surface infiltration rates and thick placement of a soil-capping layer constrained recharge to the upland aquifer, which remained below designed water contents in much of the upland. These findings indicate that it is possible to engineer the landscape to accommodate the hydrological functions of a fen peatland following surface oil sands extraction. Future research priorities should include understanding the storage and release of water within coarse-grained reclaimed landforms as well as evaluating the relative importance of external water sources and internal water conservation mechanisms for the viability of fen ecosystems over the longer-term.

SELECTION OF CITATIONS
SEARCH DETAIL
...