Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Nat Immunol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806707

ABSTRACT

The circadian clock is a critical regulator of immunity, and this circadian control of immune modulation has an essential function in host defense and tumor immunosurveillance. Here we use a single-cell RNA sequencing approach and a genetic model of colorectal cancer to identify clock-dependent changes to the immune landscape that control the abundance of immunosuppressive cells and consequent suppression of cytotoxic CD8+ T cells. Of these immunosuppressive cell types, PD-L1-expressing myeloid-derived suppressor cells (MDSCs) peak in abundance in a rhythmic manner. Disruption of the epithelial cell clock regulates the secretion of cytokines that promote heightened inflammation, recruitment of neutrophils and the subsequent development of MDSCs. We also show that time-of-day anti-PD-L1 delivery is most effective when synchronized with the abundance of immunosuppressive MDSCs. Collectively, these data indicate that circadian gating of tumor immunosuppression informs the timing and efficacy of immune checkpoint inhibitors.

2.
Breast Cancer Res ; 26(1): 5, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38183074

ABSTRACT

Triple-negative breast cancer (TNBC) is highly aggressive with limited available treatments. Stromal cells in the tumor microenvironment (TME) are crucial in TNBC progression; however, understanding the molecular basis of stromal cell activation and tumor-stromal crosstalk in TNBC is limited. To investigate therapeutic targets in the TNBC stromal niche, we used an advanced human in vitro microphysiological system called the vascularized micro-tumor (VMT). Using single-cell RNA sequencing, we revealed that normal breast tissue stromal cells activate neoplastic signaling pathways in the TNBC TME. By comparing interactions in VMTs with clinical data, we identified therapeutic targets at the tumor-stromal interface with potential clinical significance. Combining treatments targeting Tie2 signaling with paclitaxel resulted in vessel normalization and increased efficacy of paclitaxel in the TNBC VMT. Dual inhibition of HER3 and Akt also showed efficacy against TNBC. These data demonstrate the potential of inducing a favorable TME as a targeted therapeutic approach in TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Breast , Paclitaxel , Signal Transduction , Stromal Cells , Tumor Microenvironment/genetics
3.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37995687

ABSTRACT

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Subject(s)
Endogenous Retroviruses , Endogenous Retroviruses/genetics , RNA, Nuclear , Epigenesis, Genetic , Heterochromatin , Gene Expression
4.
Sci Adv ; 9(27): eadd9984, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37418531

ABSTRACT

Macrophages are essential for skeletal muscle homeostasis, but how their dysregulation contributes to the development of fibrosis in muscle disease remains unclear. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six clusters and unexpectedly found that none corresponded to traditional definitions of M1 or M2 macrophages. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 (gal-3) and osteopontin (Spp1). Spatial transcriptomics, computational inferences of intercellular communication, and in vitro assays indicated that macrophage-derived Spp1 regulates stromal progenitor differentiation. Gal-3+ macrophages were chronically activated in dystrophic muscle, and adoptive transfer assays showed that the gal-3+ phenotype was the dominant molecular program induced within the dystrophic milieu. Gal-3+ macrophages were also elevated in multiple human myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining their transcriptional programs and reveal Spp1 as a major regulator of macrophage and stromal progenitor interactions.


Subject(s)
Macrophages , Transcriptome , Mice , Animals , Humans , Mice, Inbred C57BL , Macrophages/metabolism , Muscle, Skeletal/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Fibrosis
5.
Nature ; 620(7972): 181-191, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37380767

ABSTRACT

The adult human breast is comprised of an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue1-3. Although most previous studies have focused on the breast epithelial system4-6, many of the non-epithelial cell types remain understudied. Here we constructed the comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution. Our single-cell transcriptomics study profiled 714,331 cells from 126 women, and 117,346 nuclei from 20 women, identifying 12 major cell types and 58 biological cell states. These data reveal abundant perivascular, endothelial and immune cell populations, and highly diverse luminal epithelial cell states. Spatial mapping using four different technologies revealed an unexpectedly rich ecosystem of tissue-resident immune cells, as well as distinct molecular differences between ductal and lobular regions. Collectively, these data provide a reference of the adult normal breast tissue for studying mammary biology and diseases such as breast cancer.


Subject(s)
Breast , Gene Expression Profiling , Single-Cell Analysis , Adult , Female , Humans , Breast/cytology , Breast/immunology , Breast/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Endothelial Cells/classification , Endothelial Cells/metabolism , Epithelial Cells/classification , Epithelial Cells/metabolism , Genomics , Immunity
6.
Cell Rep ; 42(6): 112590, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37261952

ABSTRACT

Distinct metabolic conditions rewire circadian-clock-controlled signaling pathways leading to the de novo construction of signal transduction networks. However, it remains unclear whether metabolic hallmarks unique to pluripotent stem cells (PSCs) are connected to clock functions. Reprogramming somatic cells to a pluripotent state, here we highlighted non-canonical functions of the circadian repressor CRY1 specific to PSCs. Metabolic reprogramming, including AMPK inactivation and SREBP1 activation, was coupled with the accumulation of CRY1 in PSCs. Functional assays verified that CRY1 is required for the maintenance of self-renewal capacity, colony organization, and metabolic signatures. Genome-wide occupancy of CRY1 identified CRY1-regulatory genes enriched in development and differentiation in PSCs, albeit not somatic cells. Last, cells lacking CRY1 exhibit differential gene expression profiles during induced PSC (iPSC) reprogramming, resulting in impaired iPSC reprogramming efficiency. Collectively, these results suggest the functional implication of CRY1 in pluripotent reprogramming and ontogenesis, thereby dictating PSC identity.


Subject(s)
Circadian Clocks , Cryptochromes , Pluripotent Stem Cells , Cell Differentiation , Cellular Reprogramming , Circadian Clocks/genetics , Signal Transduction , Animals , Mice , Cryptochromes/metabolism
7.
bioRxiv ; 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37163043

ABSTRACT

The adult human breast comprises an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue. While previous studies have mainly focused on the breast epithelial system, many of the non-epithelial cell types remain understudied. Here, we constructed a comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution. Our single-cell transcriptomics data profiled 535,941 cells from 62 women, and 120,024 nuclei from 20 women, identifying 11 major cell types and 53 cell states. These data revealed abundant pericyte, endothelial and immune cell populations, and highly diverse luminal epithelial cell states. Our spatial mapping using three technologies revealed an unexpectedly rich ecosystem of tissue-resident immune cells in the ducts and lobules, as well as distinct molecular differences between ductal and lobular regions. Collectively, these data provide an unprecedented reference of adult normal breast tissue for studying mammary biology and disease states such as breast cancer.

8.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131694

ABSTRACT

The monocytic/macrophage system is essential for skeletal muscle homeostasis, but its dysregulation contributes to the pathogenesis of muscle degenerative disorders. Despite our increasing knowledge of the role of macrophages in degenerative disease, it still remains unclear how macrophages contribute to muscle fibrosis. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six novel clusters. Unexpectedly, none corresponded to traditional definitions of M1 or M2 macrophage activation. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 and spp1. Spatial transcriptomics and computational inferences of intercellular communication indicated that spp1 regulates stromal progenitor and macrophage interactions during muscular dystrophy. Galectin-3 + macrophages were chronically activated in dystrophic muscle and adoptive transfer assays showed that the galectin-3 + phenotype was the dominant molecular program induced within the dystrophic milieu. Histological examination of human muscle biopsies revealed that galectin-3 + macrophages were also elevated in multiple myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining the transcriptional programs induced in muscle macrophages, and reveal spp1 as a major regulator of macrophage and stromal progenitor interactions.

9.
J Immunol ; 210(11): 1677-1686, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37083696

ABSTRACT

Transplantation of human neural stem cells (hNSCs) is a promising regenerative therapy to promote remyelination in patients with multiple sclerosis (MS). Transplantation of hNSCs has been shown to increase the number of CD4+CD25+Foxp3+ T regulatory cells (Tregs) in the spinal cords of murine models of MS, which is correlated with a strong localized remyelination response. However, the mechanisms by which hNSC transplantation leads to an increase in Tregs in the CNS remains unclear. We report that hNSCs drive the conversion of T conventional (Tconv) cells into Tregs in vitro. Conversion of Tconv cells is Ag driven and fails to occur in the absence of TCR stimulation by cognate antigenic self-peptides. Furthermore, CNS Ags are sufficient to drive this conversion in the absence of hNSCs in vitro and in vivo. Importantly, only Ags presented in the thymus during T cell selection drive this Treg response. In this study, we investigate the mechanisms by which hNSC Ags drive the conversion of Tconv cells into Tregs and may provide key insight needed for the development of MS therapies.


Subject(s)
Multiple Sclerosis , Neural Stem Cells , Humans , Mice , Animals , T-Lymphocytes, Regulatory , CD4-Positive T-Lymphocytes , Multiple Sclerosis/therapy , Lymphocyte Activation , Forkhead Transcription Factors , CD4 Antigens
10.
Nat Genet ; 55(4): 595-606, 2023 04.
Article in English | MEDLINE | ID: mdl-36914836

ABSTRACT

Women with germline BRCA1 mutations (BRCA1+/mut) have increased risk for hereditary breast cancer. Cancer initiation in BRCA1+/mut is associated with premalignant changes in breast epithelium; however, the role of the epithelium-associated stromal niche during BRCA1-driven tumor initiation remains unclear. Here we show that the premalignant stromal niche promotes epithelial proliferation and mutant BRCA1-driven tumorigenesis in trans. Using single-cell RNA sequencing analysis of human preneoplastic BRCA1+/mut and noncarrier breast tissues, we show distinct changes in epithelial homeostasis including increased proliferation and expansion of basal-luminal intermediate progenitor cells. Additionally, BRCA1+/mut stromal cells show increased expression of pro-proliferative paracrine signals. In particular, we identify pre-cancer-associated fibroblasts (pre-CAFs) that produce protumorigenic factors including matrix metalloproteinase 3 (MMP3), which promotes BRCA1-driven tumorigenesis in vivo. Together, our findings demonstrate that precancerous stroma in BRCA1+/mut may elevate breast cancer risk through the promotion of epithelial proliferation and an accumulation of luminal progenitor cells with altered differentiation.


Subject(s)
Breast Neoplasms , Mammary Glands, Human , Female , Humans , Mutation , BRCA1 Protein/genetics , Breast Neoplasms/pathology , Cell Transformation, Neoplastic/metabolism , Mammary Glands, Human/metabolism , Carcinogenesis/pathology , Stromal Cells/pathology
11.
Cell Rep ; 40(5): 111155, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35926463

ABSTRACT

Delayed and often impaired wound healing in the elderly presents major medical and socioeconomic challenges. A comprehensive understanding of the cellular/molecular changes that shape complex cell-cell communications in aged skin wounds is lacking. Here, we use single-cell RNA sequencing to define the epithelial, fibroblast, immune cell types, and encompassing heterogeneities in young and aged skin during homeostasis and identify major changes in cell compositions, kinetics, and molecular profiles during wound healing. Our comparative study uncovers a more pronounced inflammatory phenotype in aged skin wounds, featuring neutrophil persistence and higher abundance of an inflammatory/glycolytic Arg1Hi macrophage subset that is more likely to signal to fibroblasts via interleukin (IL)-1 than in young counterparts. We predict systems-level differences in the number, strength, route, and signaling mediators of putative cell-cell communications in young and aged skin wounds. Our study exposes numerous cellular/molecular targets for functional interrogation and provides a hypothesis-generating resource for future wound healing studies.


Subject(s)
Fibroblasts , Wound Healing , Cell Communication , Fibroblasts/metabolism , Macrophages/metabolism , Signal Transduction , Skin
12.
Biomolecules ; 12(7)2022 06 23.
Article in English | MEDLINE | ID: mdl-35883430

ABSTRACT

Recent advances in single-cell transposase-accessible chromatin using a sequencing assay (scATAC-seq) allow cellular heterogeneity dissection and regulatory landscape reconstruction with an unprecedented resolution. However, compared to bulk-sequencing, its ultra-high missingness remarkably reduces usable reads in each cell type, resulting in broader, fuzzier peak boundary definitions and limiting our ability to pinpoint functional regions and interpret variant impacts precisely. We propose a weakly supervised learning method, scEpiLock, to directly identify core functional regions from coarse peak labels and quantify variant impacts in a cell-type-specific manner. First, scEpiLock uses a multi-label classifier to predict chromatin accessibility via a deep convolutional neural network. Then, its weakly supervised object detection module further refines the peak boundary definition using gradient-weighted class activation mapping (Grad-CAM). Finally, scEpiLock provides cell-type-specific variant impacts within a given peak region. We applied scEpiLock to various scATAC-seq datasets and found that it achieves an area under receiver operating characteristic curve (AUC) of ~0.9 and an area under precision recall (AUPR) above 0.7. Besides, scEpiLock's object detection condenses coarse peaks to only ⅓ of their original size while still reporting higher conservation scores. In addition, we applied scEpiLock on brain scATAC-seq data and reported several genome-wide association studies (GWAS) variants disrupting regulatory elements around known risk genes for Alzheimer's disease, demonstrating its potential to provide cell-type-specific biological insights in disease studies.


Subject(s)
Epigenomics , Genome-Wide Association Study , Chromatin/genetics , Epigenesis, Genetic , Supervised Machine Learning
14.
Cell Rep ; 38(2): 110240, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021086

ABSTRACT

Maintenance of undifferentiated, long-lived, and often quiescent stem cells in the basal compartment is important for homeostasis and regeneration of multiple epithelial tissues, but the molecular mechanisms that coordinately control basal cell fate and stem cell quiescence are elusive. Here, we report an epithelium-intrinsic requirement for Zeb1, a core transcriptional inducer of epithelial-to-mesenchymal transition, for mammary epithelial ductal side branching and for basal cell regenerative capacity. Our findings uncover an evolutionarily conserved role of Zeb1 in promoting basal cell fate over luminal differentiation. We show that Zeb1 loss results in increased basal cell proliferation at the expense of quiescence and self-renewal. Moreover, Zeb1 cooperates with YAP to activate Axin2 expression, and inhibition of Wnt signaling partially restores stem cell function to Zeb1-deficient basal cells. Thus, Zeb1 is a transcriptional regulator that maintains both basal cell fate and stem cell quiescence, and it functions in part through suppressing Wnt signaling.


Subject(s)
Cell Lineage/genetics , Stem Cells/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism , 3T3 Cells , Animals , Axin Protein/metabolism , Cell Differentiation , Cell Proliferation , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Transcription Factors , Wnt Signaling Pathway/physiology , Zinc Finger E-box-Binding Homeobox 1/genetics
15.
Commun Biol ; 4(1): 1268, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741115

ABSTRACT

Metastasis is a fatal disease where research progress has been hindered by a lack of authentic experimental models. Here, we develop a 3D tumor sphere culture-transplant system that facilitates the growth and engineering of patient-derived xenograft (PDX) tumor cells for functional metastasis assays in vivo. Orthotopic transplantation and RNA sequencing (RNA-seq) analyses show that PDX tumor spheres maintain tumorigenic potential, and the molecular marker and global transcriptome signatures of native tumor cells. Tumor spheres display robust capacity for lentiviral engineering and dissemination in spontaneous and experimental metastasis assays in vivo. Inhibition of pathways previously reported to attenuate metastasis also inhibit metastasis after sphere culture, validating our approach for authentic investigations of metastasis. Finally, we demonstrate a new role for the metabolic enzyme NME1 in promoting breast cancer metastasis, providing proof-of-principle that our culture-transplant system can be used for authentic propagation and engineering of patient tumor cells for functional studies of metastasis.


Subject(s)
Breast Neoplasms/pathology , Heterografts , Neoplasm Metastasis , Xenograft Model Antitumor Assays , Animals , Disease Models, Animal , Female , Mice , Neoplasms, Experimental , Tumor Microenvironment
16.
Nat Methods ; 18(9): 1091-1102, 2021 09.
Article in English | MEDLINE | ID: mdl-34413523

ABSTRACT

Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional time-lapse images. Mitometer requires only the pixel size and the time between frames to identify mitochondrial motion and morphology, including fusion and fission events. The segmentation algorithm isolates individual mitochondria via a shape- and size-preserving background removal process. The tracking algorithm links mitochondria via differences in morphological features and displacement, followed by a gap-closing scheme. Using Mitometer, we show that mitochondria of triple-negative breast cancer cells are faster, more directional, and more elongated than those in their receptor-positive counterparts. Furthermore, we show that mitochondrial motility and morphology in breast cancer, but not in normal breast epithelia, correlate with metabolic activity. Mitometer is an unbiased and user-friendly tool that will help resolve fundamental questions regarding mitochondrial form and function.


Subject(s)
Breast Neoplasms/pathology , Imaging, Three-Dimensional/methods , Mitochondria , Software , Time-Lapse Imaging/methods , Algorithms , Breast Neoplasms/metabolism , Cells, Cultured , Female , Humans , Mammary Glands, Human/cytology , Mitochondria/metabolism , NAD/metabolism , Reproducibility of Results , Triple Negative Breast Neoplasms/pathology
17.
Commun Biol ; 4(1): 685, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083739

ABSTRACT

Foreign body response (FBR) to biomaterials compromises the function of implants and leads to medical complications. Here, we report a hybrid alginate microcapsule (AlgXO) that attenuated the immune response after implantation, through releasing exosomes derived from human Umbilical Cord Mesenchymal Stem Cells (XOs). Upon release, XOs suppress the local immune microenvironment, where xenotransplantation of rat islets encapsulated in AlgXO led to >170 days euglycemia in immunocompetent mouse model of Type 1 Diabetes. In vitro analyses revealed that XOs suppressed the proliferation of CD3/CD28 activated splenocytes and CD3+ T cells. Comparing suppressive potency of XOs in purified CD3+ T cells versus splenocytes, we found XOs more profoundly suppressed T cells in the splenocytes co-culture, where a heterogenous cell population is present. XOs also suppressed CD3/CD28 activated human peripheral blood mononuclear cells (PBMCs) and reduced their cytokine secretion including IL-2, IL-6, IL-12p70, IL-22, and TNFα. We further demonstrate that XOs mechanism of action is likely mediated via myeloid cells and XOs suppress both murine and human macrophages partly by interfering with NFκB pathway. We propose that through controlled release of XOs, AlgXO provide a promising new platform that could alleviate the local immune response to implantable biomaterials.


Subject(s)
Diabetes Mellitus, Experimental/surgery , Diabetes Mellitus, Type 1/surgery , Exosomes/immunology , Immunity/immunology , Immunologic Factors/immunology , Islets of Langerhans Transplantation/methods , Animals , Cells, Cultured , Coculture Techniques , Cytokines/immunology , Cytokines/metabolism , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 1/immunology , Exosomes/metabolism , Humans , Immunocompromised Host/immunology , Immunologic Factors/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Rats , Spleen/cytology , Spleen/immunology , Spleen/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transplantation, Heterologous
18.
Cell Death Dis ; 12(6): 516, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34016957

ABSTRACT

Bone marrow-derived human mesenchymal stem cells (hMSCs) are recruited to damaged or inflamed tissues where they contribute to tissue repair. This multi-step process involves chemokine-directed invasion of hMSCs and on-site release of factors that influence target cells or tumor tissues. However, the underlying molecular mechanisms are largely unclear. Previously, we described that microRNA let-7f controls hMSC differentiation. Here, we investigated the role of let-7f in chemotactic invasion and paracrine anti-tumor effects. Incubation with stromal cell-derived factor-1α (SDF-1α) or inflammatory cytokines upregulated let-7f expression in hMSCs. Transfection of hMSCs with let-7f mimics enhanced CXCR4-dependent invasion by augmentation of pericellular proteolysis and release of matrix metalloproteinase-9. Hypoxia-induced stabilization of the hypoxia-inducible factor 1 alpha in hMSCs promoted cell invasion via let-7f and activation of autophagy. Dependent on its endogenous level, let-7f facilitated hMSC motility and invasion through regulation of the autophagic flux in these cells. In addition, secreted let-7f encapsulated in exosomes was increased upon upregulation of endogenous let-7f by treatment of the cells with SDF-1α, hypoxia, or induction of autophagy. In recipient 4T1 tumor cells, hMSC-derived exosomal let-7f attenuated proliferation and invasion. Moreover, implantation of 3D spheroids composed of hMSCs and 4T1 cells into a breast cancer mouse model demonstrated that hMSCs overexpressing let-7f inhibited tumor growth in vivo. Our findings provide evidence that let-7f is pivotal in the regulation of hMSC invasion in response to inflammation and hypoxia, suggesting that exosomal let-7f exhibits paracrine anti-tumor effects.


Subject(s)
Chemokine CXCL12/metabolism , Mammary Neoplasms, Experimental/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , Tumor Hypoxia/physiology , Animals , Cell Communication/physiology , Cell Differentiation/physiology , Cell Proliferation/physiology , Disease Models, Animal , Female , Humans , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred BALB C , MicroRNAs/biosynthesis , Transfection
19.
Nat Commun ; 12(1): 2858, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001902

ABSTRACT

Tissues are complex mixtures of different cell subtypes, and this diversity is increasingly characterized using high-throughput single cell analysis methods. However, these efforts are hindered, as tissues must first be dissociated into single cell suspensions using methods that are often inefficient, labor-intensive, highly variable, and potentially biased towards certain cell subtypes. Here, we present a microfluidic platform consisting of three tissue processing technologies that combine tissue digestion, disaggregation, and filtration. The platform is evaluated using a diverse array of tissues. For kidney and mammary tumor, microfluidic processing produces 2.5-fold more single cells. Single cell RNA sequencing further reveals that endothelial cells, fibroblasts, and basal epithelium are enriched without affecting stress response. For liver and heart, processing time is dramatically reduced. We also demonstrate that recovery of cells from the system at periodic intervals during processing increases hepatocyte and cardiomyocyte numbers, as well as increases reproducibility from batch-to-batch for all tissues.


Subject(s)
Kidney/metabolism , Liver/metabolism , Microfluidic Analytical Techniques/methods , Myocardium/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Cell Count , Endothelial Cells/cytology , Endothelial Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Kidney/cytology , Liver/cytology , MCF-7 Cells , Mice, Inbred BALB C , Mice, Inbred C57BL , Microfluidic Analytical Techniques/instrumentation , Myocardium/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Reproducibility of Results
20.
Lab Chip ; 21(7): 1333-1351, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33605955

ABSTRACT

Around 95% of anti-cancer drugs that show promise during preclinical study fail to gain FDA-approval for clinical use. This failure of the preclinical pipeline highlights the need for improved, physiologically-relevant in vitro models that can better serve as reliable drug-screening and disease modeling tools. The vascularized micro-tumor (VMT) is a novel three-dimensional model system (tumor-on-a-chip) that recapitulates the complex human tumor microenvironment, including perfused vasculature, within a transparent microfluidic device, allowing real-time study of drug responses and tumor-stromal interactions. Here we have validated this microphysiological system (MPS) platform for the study of colorectal cancer (CRC), the second leading cause of cancer-related deaths, by showing that gene expression, tumor heterogeneity, and treatment responses in the VMT more closely model CRC tumor clinicopathology than current standard drug screening modalities, including 2-dimensional monolayer culture and 3-dimensional spheroids.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Drug Evaluation, Preclinical , Humans , Lab-On-A-Chip Devices , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...