Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
New Phytol ; 241(1): 394-408, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36866975

ABSTRACT

The extracellular space of plant tissues contains hundreds of hydrolases that might harm colonising microbes. Successful pathogens may suppress these hydrolases to enable disease. Here, we report the dynamics of extracellular hydrolases in Nicotiana benthamiana upon infection with Pseudomonas syringae. Using activity-based proteomics with a cocktail of biotinylated probes, we simultaneously monitored 171 active hydrolases, including 109 serine hydrolases (SHs), 49 glycosidases (GHs) and 13 cysteine proteases (CPs). The activity of 82 of these hydrolases (mostly SHs) increases during infection, while the activity of 60 hydrolases (mostly GHs and CPs) is suppressed during infection. Active ß-galactosidase-1 (BGAL1) is amongst the suppressed hydrolases, consistent with production of the BGAL1 inhibitor by P. syringae. One of the other suppressed hydrolases, the pathogenesis-related NbPR3, decreases bacterial growth when transiently overexpressed. This is dependent on its active site, revealing a role for NbPR3 activity in antibacterial immunity. Despite being annotated as a chitinase, NbPR3 does not possess chitinase activity and contains an E112Q active site substitution that is essential for antibacterial activity and is present only in Nicotiana species. This study introduces a powerful approach to reveal novel components of extracellular immunity, exemplified by the discovery of the suppression of neo-functionalised Nicotiana-specific antibacterial NbPR3.


Subject(s)
Chitinases , Hydrolases , Proteomics , Nicotiana , Pseudomonas syringae , Plant Diseases/microbiology
3.
Nat Prod Rep ; 37(2): 163-174, 2020 02 26.
Article in English | MEDLINE | ID: mdl-31451830

ABSTRACT

Covering: 1989 up to 2019 Ahp-cyclodepsipeptides (also known as Ahp-containing cyclodepsipeptides, cyanopeptolins, micropeptins, microginines, and lyngbyastatins, and by many other names) are a family of non-ribosomal peptide synthesis (NRPS)-derived natural products with potent serine protease inhibitory properties. Here, we review their isolation and structural elucidation from natural sources as well as studies of their biosynthesis, molecular mode of action, and use in drug discovery efforts. Accordingly, this summary aims to provide a comprehensive overview of the current state-of-the-art Ahp-cyclodepsipeptide research.


Subject(s)
Depsipeptides/chemistry , Depsipeptides/pharmacology , Oligopeptides/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Depsipeptides/biosynthesis , Depsipeptides/chemical synthesis , Molecular Structure , Oligopeptides/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...