Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-36231718

ABSTRACT

BACKGROUND: Medical progress is increasingly enabling more and more stationary treatment to be provided in the outpatient sector. This development should be welcomed, as healthcare costs have been rising for years. The design of efficient processes and a needs-based infrastructure enable further savings. According to international recommendations (EHS/IEHS), outpatient treatment of unilateral inguinal hernias is recommended. METHOD: Data from patients in GZO Hospital Wetzikon/Zurich between 2019 and 2021 for unilateral inguinal hernia repair was included in this study (n = 234). Any over- or under-coverage correlated with one of the three treatment groups: stationary, partially stationary and patients treated in outpatients clinic. Complications and 30-day readmissions were also monitored. RESULTS: Final revenue for all patients is -95.36 CHF. For stationary treatments, the mean shifts down to -575.01 CHF, for partially stationary treatments the mean shifts up to -24.73 CHF, and for patients in outpatient clinic final revenue is 793.12 CHF. This result is also consistent with the operation times, which are lowest in the outpatient clinic with a mean of 36 min, significantly longer in the partially stationary setting with 58 min, and longest in the stationary setting with 76 min. The same applies to the anesthesia times and the relevant care times by the nurses as the most important cost factors in addition to the supply and allocation costs. CONCLUSIONS: We show that cost-effective elective unilateral inguinal hernia care in the outpatient clinic with profit (mean 793.12 CHF) is possible. Stationary unilateral hernia care (mean -575.01 CHF) is loss-making. Crucial factors for cost efficiency are optimized processes in the operating room (anesthesia, surgical technique and quality, operating time), as well as optimized care processes with minimal preoperative services and care times for the patient. However, at the same time, these optimizations pose a challenge to surgical and anesthesiology training and structures with high levels of preoperative and Postoperative services and pay-as-you-go costs. The complication rate is 0.91% lower than in a comparable study. The readmission within 30 days post-operation results with a positive deviation of -3.53% (stationary) and with a negative deviation of +2.29% (outpatient clinic) compared to a comparative study.


Subject(s)
Anesthesia , Hernia, Inguinal , Ambulatory Care , Health Care Costs , Hernia, Inguinal/surgery , Humans , Operative Time
2.
Int J Sports Med ; 38(2): 85-91, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27454133

ABSTRACT

Prolonged breath-hold causes complex compensatory mechanisms such as increase in blood pressure, redistribution of blood flow, and bradycardia. We tested whether apnea induces an elevation of catecholamine-concentrations in well-trained apneic divers.11 apneic divers performed maximal dry apnea in a horizontal position. Parameters measured during apnea included blood pressure, ECG, and central, in addition to peripheral hemoglobin oxygenation. Peripheral arterial hemoglobin oxygenation was detected by pulse oximetry, whereas peripheral (abdominal) and central (cerebral) tissue oxygenation was measured by Near Infrared Spectroscopy (NIRS). Exhaled O2 and CO2, plasma norepinephrine and epinephrine concentrations were measured before and after apnea.Averaged apnea time was 247±76 s. Systolic blood pressure increased from 135±13 to 185±25 mmHg. End-expiratory CO2 increased from 29±4 mmHg to 49±6 mmHg. Norepinephrine increased from 623±307 to 1 826±984 pg ml-1 and epinephrine from 78±22 to 143±65 pg ml-1 during apnea. Heart rate reduction was inversely correlated with increased norepinephrine (correlation coefficient -0.844, p=0.001). Central (cerebral) O2 desaturation was time-delayed compared to peripheral O2 desaturation as measured by NIRSabdominal and SpO2.Increased norepinephrine caused by apnea may contribute to blood shift from peripheral tissues to the CNS and thus help to preserve cerebral tissue O2 saturation longer than that of peripheral tissue.


Subject(s)
Apnea/blood , Breath Holding , Epinephrine/blood , Hypoxia/blood , Norepinephrine/blood , Adult , Blood Pressure , Carbon Dioxide/analysis , Diving/physiology , Female , Heart Rate , Hemoglobins , Humans , Male , Middle Aged , Oximetry , Oxygen/blood , Spectroscopy, Near-Infrared
3.
J Vis Exp ; (118)2016 12 22.
Article in English | MEDLINE | ID: mdl-28060323

ABSTRACT

In case of apnea, arterial partial pressure of oxygen (pO2) decreases, while partial pressure of carbon dioxide (pCO2) increases. To avoid damage to hypoxia sensitive organs such as the brain, compensatory circulatory mechanisms help to maintain an adequate oxygen supply. This is mainly achieved by increased cerebral blood flow. Intermittent hypoxia is a commonly seen phenomenon in patients with obstructive sleep apnea. Acute airway obstruction can also result in hypoxia and hypercapnia. Until now, no adequate model has been established to simulate these dynamics in humans. Previous investigations focusing on human hypoxia used inhaled hypoxic gas mixtures. However, the resulting hypoxia was combined with hyperventilation and is therefore more representative of high altitude environments than of apnea. Furthermore, the transferability of previously performed animal experiments to humans is limited and the pathophysiological background of apnea induced physiological changes is poorly understood. In this study, healthy human apneic divers were utilized to mimic clinically relevant hypoxia and hypercapnia during apnea. Additionally, pulse-oximetry and Near Infrared Spectroscopy (NIRS) were used to evaluate changes in cerebral and peripheral oxygen saturation before, during, and after apnea.


Subject(s)
Apnea/physiopathology , Hypoxia/physiopathology , Carbon Dioxide/analysis , Diving , Humans , Hypercapnia/physiopathology , Oximetry , Oxygen/analysis , Partial Pressure , Spectroscopy, Near-Infrared
4.
Inorg Chem ; 54(6): 3031-42, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25741900

ABSTRACT

A series of cationic iridium(III) complexes with two carbene-based cyclometalating ligands and five different N^N bipyridine and 1,10-phenanthroline ancillary ligands is presented. For the first time--in the frame of a rarely studied class of bis(heteroleptic) iridium complexes with two carbene-based cyclometalating ligands--a pair of cis and trans isomers has been isolated. All complexes (trans-1-5 and cis-3) were characterized by (1)H NMR, (13)C NMR, (31)P NMR, and HRMS (ESI-TOF); in addition, crystal structures of cis-3 and trans-4 are reported and discussed. Cyclic voltammetric studies show that the whole series exhibits highly reversible oxidation and reduction processes, suggesting promising potential for optoelectronic applications. Ground-state DFT and TD-DFT calculations nicely predict the blue shift experimentally observed in the room-temperature absorption and emission spectra of cis-3, compared to the trans complexes. In CH3CN, cis-3 displays a 4-fold increase in photoluminescence quantum yield (PLQY) with respect to trans-3, as a consequence of drastically slower nonradiative rate constant. By contrast, at 77 K, the emission properties of all the compounds, including the cis isomer, are much more similar, with a pronounced hypsochromic shift for the trans complexes. A similar behavior is found in solid state (1% w/w poly(methyl methacrylate) matrix), with all complexes displaying PLQY of ∼70-80%, comparable emission lifetimes (τ ≈ 1.3 µs), and a remarkable rigidochromic shift. To rationalize the more pronounced nonradiative deactivation (and smaller PLQY) observed for photoexcited trans complexes, comparative temperature-dependent emission studies in the range of 77-450 K for cis-3 and trans-3 were made in propylene glycol, showing that solvation effects are primarily responsible for the observed behavior.

5.
J Clin Monit Comput ; 29(6): 749-57, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25649718

ABSTRACT

In this study we investigated the responsiveness of near-infrared spectroscopy (NIRS) recordings measuring regional cerebral tissue oxygenation (rSO2) during hypoxia in apneic divers. The goal was to mimic dynamic hypoxia as present during cardiopulmonary resuscitation, laryngospasm, airway obstruction, or the "cannot ventilate cannot intubate" situation. Ten experienced apneic divers performed maximal breath hold maneuvers under dry conditions. SpO2 was measured by Masimo™ pulse oximetry on the forefinger of the left hand. NIRS was measured by NONIN Medical's EQUANOX™ on the forehead or above the musculus quadriceps femoris. Following apnea median cerebral rSO2 and SpO2 values decreased significantly from 71 to 54 and from 100 to 65%, respectively. As soon as cerebral rSO2 and SpO2 values decreased monotonically the correlation between normalized cerebral rSO2 and SpO2 values was highly significant (Pearson correlation coefficient = 0.893). Prior to correlation analyses, the values were normalized by dividing them by the individual means of stable pre-apneic measurements. Cerebral rSO2 measured re-saturation after termination of apnea significantly earlier (10 s, SD = 3.6 s) compared to SpO2 monitoring (21 s, SD = 4.4 s) [t(9) = 7.703, p < 0.001, r(2) = 0.868]. Our data demonstrate that NIRS monitoring reliably measures dynamic changes in cerebral tissue oxygen saturation, and identifies successful re-saturation faster than SpO2. Measuring cerebral rSO2 may prove beneficial in case of respiratory emergencies and during pulseless situations where SpO2 monitoring is impossible.


Subject(s)
Apnea/physiopathology , Hypoxia/physiopathology , Spectroscopy, Near-Infrared/methods , Adult , Apnea/complications , Breath Holding , Cerebrovascular Circulation , Diving/adverse effects , Diving/physiology , Female , Humans , Hypoxia/etiology , Male , Middle Aged , Monitoring, Physiologic/methods , Oximetry/methods , Oxygen/blood
6.
Dalton Trans ; 43(5): 1961-4, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24310544

ABSTRACT

Small quantities of Cl(-) ions result in dramatic reductions in the performance of ionic transition metal complexes in light-emitting electrochemical cells. Strong ion-pairing between aromatic protons and chloride has been established in both the solid state and solution. X-ray structural determination of 2{[Ir(ppy)2(bpy)][Cl]}·2CH2Cl2·[H3O]·Cl reveals the unusual nature of an impurity encountered in the preparation of [Ir(ppy)2(bpy)][PF6].

7.
Inorg Chem ; 52(18): 10292-305, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-24003764

ABSTRACT

Charged cyclometalated (C(^)N) iridium(III) complexes with carbene-based ancillary ligands are a promising family of deep-blue phosphorescent compounds. Their emission properties are controlled primarily by the main C(^)N ligands, in contrast to the classical design of charged complexes where N(^)N ancillary ligands with low-energy π* orbitals, such as 2,2'-bipyridine, are generally used for this purpose. Herein we report two series of charged iridium complexes with various carbene-based ancillary ligands. In the first series the C(^)N ligand is 2-phenylpyridine, whereas in the second one it is 2-(2,4-difluorophenyl)-pyridine. One bis-carbene (:C(^)C:) and four different pyridine-carbene (N(^)C:) chelators are used as bidentate ancillary ligands in each series. Synthesis, X-ray crystal structures, and photophysical and electrochemical properties of the two series of complexes are described. At room temperature, the :C(^)C: complexes show much larger photoluminescence quantum yields (ΦPL) of ca. 30%, compared to the N(^)C: analogues (around 1%). On the contrary, all of the investigated complexes are bright emitters in the solid state both at room temperature (1% poly(methyl methacrylate) matrix, ΦPL 30-60%) and at 77 K. Density functional theory calculations are used to rationalize the differences in the photophysical behavior observed upon change of the ancillary ligands. The N(^)C:-type complexes possess a low-lying triplet metal-centered ((3)MC) state mainly deactivating the excited state through nonradiative processes; in contrast, no such state is present for the :C(^)C: analogues. This finding is supported by temperature-dependent excited-state lifetime measurements made on representative N(^)C: and :C(^)C: complexes.

8.
Phys Chem Chem Phys ; 15(19): 7087-97, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23552732

ABSTRACT

Regeneration and recombination kinetics was investigated for dye-sensitized solar cells (DSCs) using a series of different cobalt polypyridine redox couples, with redox potentials ranging between 0.34 and 1.20 V vs. NHE. Marcus theory was applied to explain the rate of electron transfer. The regeneration kinetics for a number of different dyes (L0, D35, Y123, Z907) by most of the cobalt redox shuttles investigated occurred in the Marcus normal region. The calculated reorganization energies for the regeneration reaction ranged between 0.59 and 0.70 eV for the different organic and organometallic dyes investigated. Under the experimental conditions employed, the regeneration efficiency decreased when cobalt complexes with a driving force for regeneration of 0.4 eV and less were employed. The regeneration efficiency was found to depend on the structure of the dye and the concentration of the redox couples. [Co(bpy-pz)2](2+), which has a driving force for regeneration of 0.25 eV for the triphenylamine based organic dye, D35, was found to regenerate 84% of the dye molecules, when a high concentration of the cobalt complex was used. Recombination kinetics between electrons in TiO2 and cobalt(iii) species in the electrolyte was also studied using steady state dark current measurements. For cobalt complexes with highly positive redox potentials (>0.55 V vs. NHE) dark current was found to decrease, consistent with electron transfer reactions occurring in the Marcus inverted region. However, for the cobalt complexes with the most positive redox potentials an increase in dark current was found, which can be attributed to recombination mediated by surface states.

9.
J Am Chem Soc ; 134(47): 19438-53, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-23113640

ABSTRACT

We report a combined experimental and computational investigation to understand the nature of the interactions between cobalt redox mediators and TiO(2) surfaces sensitized by ruthenium and organic dyes, and their impact on the performance of the corresponding dye-sensitized solar cells (DSSCs). We focus on different ruthenium dyes and fully organic dyes, to understand the dramatic loss of efficiency observed for the prototype Ru(II) N719 dye in conjunction with cobalt electrolytes. Both N719- and Z907-based DSSCs showed an increased lifetime in iodine-based electrolyte compared to the cobalt-based redox shuttle, while the organic D21L6 and D25L6 dyes, endowed with long alkoxy chains, show no significant change in the electron lifetime regardless of employed electrolyte and deliver a high photovoltaic efficiency of 6.5% with a cobalt electrolyte. Ab initio molecular dynamics simulations show the formation of a complex between the cobalt electrolyte and the surface-adsorbed ruthenium dye, which brings the [Co(bpy)(3)](3+) species into contact with the TiO(2) surface. This translates into a high probability of intercepting TiO(2)-injected electrons by the oxidized [Co(bpy)(3)](3+) species, lying close to the N719-sensitized TiO(2) surface. Investigation of the dye regeneration mechanism by the cobalt electrolyte in the Marcus theory framework led to substantially different reorganization energies for the high-spin (HS) and low-spin (LS) reaction pathways. Our calculated reorganization energies for the LS pathways are in excellent agreement with recent data for a series of cobalt complexes, lending support to the proposed regeneration pathway. Finally, we systematically investigate a series of Co(II)/Co(III) complexes to gauge the impact of ligand substitution and of metal coordination (tris-bidentate vs bis-tridentate) on the HS/LS energy difference and reorganization energies. Our results allow us to trace structure/property relations required for further development of cobalt electrolytes for DSSCs.

10.
Chem Commun (Camb) ; 48(78): 9714-6, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-22914769

ABSTRACT

We report herein lightweight, and economical dye-sensitized solar cells fabrication facilitated by an all plastic, metal free cathode consisting of poly(3,4-ethylenedioxythiophene).

12.
Nano Lett ; 12(8): 3941-7, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22681486

ABSTRACT

Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator. After ALD of only a few angstroms of Ga(2)O(3), the electron back reaction is reduced by more than an order of magnitude, while charge collection efficiency and fill factor are increased by 30% and 15%, respectively. The photogenerated exciton separation processes of electron injection into the TiO(2) conduction band and the hole injection into the electrolyte are characterized in detail.

13.
Phys Chem Chem Phys ; 14(30): 10631-9, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22744748

ABSTRACT

We report a series of cobalt complexes with various polypyridyl ligands, where the oxidation potential is tuned from 0.17 to 0.34 V vs. ferrocene. The highest occupied molecular orbitals (HOMO) of the cobalt complexes were stabilized by adding electron acceptor groups on pyridyl or replacing pyridyl by pyrazole. These complexes are then used as one-electron redox mediators in dye sensitized solar cells (DSSCs) together with polymer based cathode resulting in an excellent performance. The performance of DSSCs using the molecularly engineered cobalt redox shuttle and poly(3,4-alkylthiophenes) based cathode is better than the triiodide/iodide redox shuttle with platinized cathode. The use of high surface area poly(3,4-propylenedioxythiophene) based nanoporous layers allows higher catalytic activity thus minimizing the electrode-electrolyte interface issues.

14.
Nat Commun ; 3: 631, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22252555

ABSTRACT

Dye-sensitized solar cells are a promising alternative to traditional inorganic semiconductor-based solar cells. Here we report an open-circuit voltage of over 1,000 mV in mesoscopic dye-sensitized solar cells incorporating a molecularly engineered cobalt complex as redox mediator. Cobalt complexes have negligible absorption in the visible region of the solar spectrum, and their redox properties can be tuned in a controlled fashion by selecting suitable donor/acceptor substituents on the ligand. This approach offers an attractive alternate to the traditional I(3)(-)/I(-) redox shuttle used in dye-sensitized solar cells. A cobalt complex using tridendate ligands [Co(bpy-pz)(2)](3+/2+)(PF(6))(3/2) as redox mediator in combination with a cyclopentadithiophene-bridged donor-acceptor dye (Y123), adsorbed on TiO(2), yielded a power conversion efficiency of over 10% at 100 mW cm(-2). This result indicates that the molecularly engineered cobalt redox shuttle is a legitimate alternative to the commonly used I(3)(-)/I(-) redox shuttle.


Subject(s)
Cobalt/chemistry , Coloring Agents/chemistry , Electric Impedance , Electric Power Supplies , Electrochemistry/methods , Electrodes , Ligands , Materials Testing , Models, Chemical , Oxidation-Reduction , Solar Energy , Sunlight , Titanium/chemistry
15.
Dalton Trans ; 41(1): 180-91, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22020405

ABSTRACT

Herein we report a series of charged iridium complexes emitting from near-UV to red using carbene-based N^C: ancillary ligands. Synthesis, photophysical and electrochemical properties of this series are described in detail together with X-ray crystal structures. Density Functional Theory calculations show that the emission originates from the cyclometallated main ligand, in contrast to commonly designed charged complexes using bidentate N^N ancillary ligands, where the emission originates from the ancillary N^N ligand. The radiative process of this series of compounds is characterized by relatively low photoluminescence quantum yields in solution that is ascribed to non-radiative deactivation of the excited state by thermally accessible metal-centered states. Despite the poor photophysical properties of this series of complexes in solution, electroluminescent emission from the bluish-green to orange region of the visible spectrum is obtained when they are used as active compounds in light-emitting electrochemical cells.

16.
Inorg Chem ; 51(1): 215-24, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22148629

ABSTRACT

Investigations of blue phosphorescent organic light emitting diodes (OLEDs) based on [Ir(2-(2,4-difluorophenyl)pyridine)(2)(picolinate)] (FIrPic) have pointed to the cleavage of the picolinate as a possible reason for device instability. We reproduced the loss of picolinate and acetylacetonate ancillary ligands in solution by the addition of Brønsted or Lewis acids. When hydrochloric acid is added to a solution of a [Ir(C^N)(2)(X^O)] complex (C^N = 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (diFppy) and X^O = picolinate (pic) or acetylacetonate (acac)), the cleavage of the ancillary ligand results in the direct formation of the chloro-bridged iridium(III) dimer [{Ir(C^N)(2)(µ-Cl)}(2)]. When triflic acid or boron trifluoride are used, a source of chloride (here tetrabutylammonium chloride) is added to obtain the same chloro-bridged iridium(III) dimer. Then, we advantageously used this degradation reaction for the efficient synthesis of tris-heteroleptic cyclometalated iridium(III) complexes [Ir(C^N(1))(C^N(2))(L)], a family of cyclometalated complexes otherwise challenging to prepare. We used an iridium(I) complex, [{Ir(COD)(µ-Cl)}(2)], and a stoichiometric amount of two different C^N ligands (C^N(1) = ppy; C^N(2) = diFppy) as starting materials for the swift preparation of the chloro-bridged iridium(III) dimers. After reacting the mixture with acetylacetonate and subsequent purification, the tris-heteroleptic complex [Ir(ppy)(diFppy)(acac)] could be isolated with good yield from the crude containing as well the bis-heteroleptic complexes [Ir(ppy)(2)(acac)] and [Ir(diFppy)(2)(acac)]. Reaction of the tris-heteroleptic acac complex with hydrochloric acid gives pure heteroleptic chloro-bridged iridium dimer [{Ir(ppy)(diFppy)(µ-Cl)}(2)], which can be used as starting material for the preparation of a new tris-heteroleptic iridium(III) complex based on these two C^N ligands. Finally, we use DFT/LR-TDDFT to rationalize the impact of the two different C^N ligands on the observed photophysical and electrochemical properties.

17.
J Am Chem Soc ; 133(45): 18042-5, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-21972850

ABSTRACT

Chemical doping is an important strategy to alter the charge-transport properties of both molecular and polymeric organic semiconductors that find widespread application in organic electronic devices. We report on the use of a new class of Co(III) complexes as p-type dopants for triarylamine-based hole conductors such as spiro-MeOTAD and their application in solid-state dye-sensitized solar cells (ssDSCs). We show that the proposed compounds fulfill the requirements for this application and that the discussed strategy is promising for tuning the conductivity of spiro-MeOTAD in ssDSCs, without having to rely on the commonly employed photo-doping. By using a recently developed high molar extinction coefficient organic D-π-A sensitizer and p-doped spiro-MeOTAD as hole conductor, we achieved a record power conversion efficiency of 7.2%, measured under standard solar conditions (AM1.5G, 100 mW cm(-2)). We expect these promising new dopants to find widespread applications in organic electronics in general and photovoltaics in particular.


Subject(s)
Coloring Agents/chemistry , Electric Power Supplies , Organometallic Compounds/chemistry , Solar Energy , Molecular Conformation , Semiconductors
18.
J Am Chem Soc ; 131(19): 6676-7, 2009 May 20.
Article in English | MEDLINE | ID: mdl-19388652

ABSTRACT

An intramolecular enantioselective metal-catalyzed dearomatization reaction is described. This procedure allows the dearomatization of naphthalene derivatives through an electrophilic aromatic substitution-type reaction on a Pd(II) intermediate. The high yields and enantioselectivities achieved make this procedure a valuable method for synthetic chemists.


Subject(s)
Naphthalenes/chemistry , Palladium/chemistry , Carbazoles/chemical synthesis , Catalysis , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...