Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 98: 106499, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37393854

ABSTRACT

As the most abundant renewable aromatic polymer on the planet, lignin is gaining growing interest in replacing petroleum-based chemicals and products. However, only <5 % of industrial lignin waste is revalorized in its macromolecular form as additives, stabilizing agents or dispersant and surfactants. Herein, revalorization of this biomass was achieved by implementing an environmentally-friendly continuous sonochemical nanotransformation to obtain highly concentrated lignin nanoparticles (LigNPs) dispersions for added-value material applications. With the aim to further model and control a large-scale ultrasound-assisted lignin nanotransformation, a two-level factorial design of experiment (DoE) was implemented varying the ultrasound (US) amplitude, flow rate, and lignin concentration. Size and polydispersity measurements together with the UV-Vis spectra of lignin recorded at different time intervals of sonication allowed to monitor and understand the sonochemical process on a molecular level. The light scattering profile of sonicated lignin dispersions showed a significant particle size reduction in the first 20 min, followed by moderate particle size decrease below 700 nm until the end of the 2 h process. The response surface analysis (RSA) of the particle size data revealed that the lignin concentration and sonication time were the most important factors to achieve smaller NPs. From a mechanistic point of view, a strong impact of the particle-particle collisions due to sonication seems to be responsible for the decrease in particle size and homogenization of the particle distribution. Unexpectedly, a strong interaction between the flow rate and US amplitude on the particle size and nanotransformation efficiency was observed, yielding smaller LigNPs at high amplitude and low flow rate or vice versa. The data derived from the DoE were used to model and predict the size and polydispersity of the sonicated lignin. Furthermore, the use of the NPs spectral process trajectories calculated from the UV-Vis spectra showed similar RSA model as the dynamic light scattering (DLS) data and will potentially allow the in-line monitoring of the nanotransformation process.

2.
Polymers (Basel) ; 13(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34372143

ABSTRACT

Melamine-formaldehyde (MF) resins are widely used as surface finishes for engineered wood-based panels in decorative laminates. Since no additional glue is applied in lamination, the overall residual curing capacity of MF resins is of great technological importance. Residual curing capacity is measured by differential scanning calorimetry (DSC) as the exothermic curing enthalpy integral of the liquid resin. After resin synthesis is completed, the resulting pre-polymer has a defined chemical structure with a corresponding residual curing capacity. Predicting the residual curing capacity of a resin batch already at an early stage during synthesis would enable corrective measures to be taken by making adjustments while synthesis is still in progress. Thereby, discarding faulty batches could be avoided. Here, by using a batch modelling approach, it is demonstrated how quantitative predictions of MF residual curing capacity can be derived from inline Fourier Transform infrared (FTIR) spectra recorded during resin synthesis using partial least squares regression. Not only is there a strong correlation (R2 = 0.89) between the infrared spectra measured at the end of MF resin synthesis and the residual curing capacity. The inline reaction spectra obtained already at the point of complete dissolution of melamine upon methylolation during the initial stage of resin synthesis are also well suited for predicting final curing performance of the resin. Based on these IR spectra, a valid regression model (R2 = 0.85) can be established using information obtained at a very early stage of MF resin synthesis.

3.
Polymers (Basel) ; 12(11)2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33147712

ABSTRACT

Here, we study resin cure and network formation of solid melamine formaldehyde pre-polymer over a large temperature range via dynamic temperature curing profiles. Real-time infrared spectroscopy is used to analyze the chemical changes during network formation and network hardening. By applying chemometrics (multivariate curve resolution, MCR), the essential chemical functionalities that constitute the network at a given stage of curing are mathematically extracted and tracked over time. The three spectral components identified by MCR were methylol-rich, ether linkages-rich and methylene linkages-rich resin entities. Based on dynamic changes of their characteristic spectral patterns in dependence of temperature, curing is divided into five phases: (I) stationary phase with free methylols as main chemical feature, (II) formation of flexible network cross-linked by ether linkages, (III) formation of rigid, ether-cross-linked network, (IV) further hardening via transformation of methylols and ethers into methylene-cross-linkages, and (V) network consolidation via transformation of ether into methylene bridges. The presented spectroscopic/chemometric approach can be used as methodological basis for the functionality design of MF-based surface films at the stage of laminate pressing, i.e., for tailoring the technological property profile of cured MF films using a causal understanding of the underlying chemistry based on molecular markers and spectroscopic fingerprints.

4.
Anal Bioanal Chem ; 409(28): 6613-6623, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28918486

ABSTRACT

This paper presents an approach for label-free brain tumor tissue typing. For this application, our dual modality microspectroscopy system combines inelastic Raman scattering spectroscopy and Mie elastic light scattering spectroscopy. The system enables marker-free biomedical diagnostics and records both the chemical and morphologic changes of tissues on a cellular and subcellular level. The system setup is described and the suitability for measuring morphologic features is investigated. Graphical Abstract Bimodal approach for label-free brain tumor typing. Elastic and inelastic light scattering spectra are collected laterally resolved in one measurement setup. The spectra are investigated by multivariate data analysis for assigning the tissues to specific WHO grades according to their malignancy.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Dynamic Light Scattering/methods , Spectrum Analysis, Raman/methods , Brain Chemistry , Brain Neoplasms/chemistry , Dynamic Light Scattering/instrumentation , Equipment Design , Humans , Microscopy/methods , Multivariate Analysis , Spectrum Analysis, Raman/instrumentation
5.
Anal Bioanal Chem ; 409(3): 629-630, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27900433
6.
Anal Bioanal Chem ; 408(21): 5701-5709, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27277813

ABSTRACT

Current techniques for chromosome analysis need to be improved for rapid, economical identification of complex chromosomal defects by sensitive and selective visualisation. In this paper, we present a straightforward method for characterising unstained human metaphase chromosomes. Backscatter imaging in a dark-field setup combined with visible and short near-infrared spectroscopy is used to monitor morphological differences in the distribution of the chromosomal fine structure in human metaphase chromosomes. The reasons for the scattering centres in the fine structure are explained. Changes in the scattering centres during preparation of the metaphases are discussed. FDTD simulations are presented to substantiate the experimental findings. We show that local scattering features consisting of underlying spectral modulations of higher frequencies associated with a high variety of densely packed chromatin can be represented by their scatter profiles even on a sub-microscopic level. The result is independent of the chromosome preparation and structure size. This analytical method constitutes a rapid, cost-effective and label-free cytogenetic technique which can be used in a standard light microscope. Graphical abstract Hyperspectral backscatter imaging for label-free characterization.


Subject(s)
Chromosomes/ultrastructure , Cytogenetic Analysis/methods , Spectroscopy, Near-Infrared/methods , Chromosomes/chemistry , Humans , Metaphase , Microscopy/methods , Optical Imaging/methods , Spectral Karyotyping/methods
7.
Anal Bioanal Chem ; 405(10): 3367-79, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23397087

ABSTRACT

Raman intensities from reflection (X(R)) and transmission (X(T)) setups are compared by calculations based on random walk and analytical approaches with respect to sample thickness, absorption, and scattering. Experiments incorporating strongly scattering organic polymer layers and powder tablets of pharmaceutical ingredients validate the theoretical findings. For nonabsorbing layers, the Raman reflection and transmission intensities rise steadily with the layer thickness, starting for very thin layers with the ratio X(T)/X(R) = 1 and approaching for thick layers, a lower limit of X(T)/X(R) = 0.5. This result is completely different from the primary irradiation where the ratio of transmittance/reflectance decays hyperbolically with the layer thickness to zero. In absorbing materials, X R saturates at levels that depend strongly on the absorption and scattering coefficients. X T passes through a maximum and decreases then exponentially with increasing layer thickness to zero. From the calculated radial intensity spreads, it follows that quantitative transmission Raman spectroscopy requires diameters of the detected sample areas be about six times larger than the sample thickness. In stratified systems, Raman transmission allows deep probing even of small quantities in buried layers. In double layers, the information is independent from the side of the measurements. In triple layers simulating coated tablets, the information of X T originates mainly from the center of the bulk material whereas X R highlights the irradiated boundary region. However, if the stratified sample is measured in a Raman reflection setup in front of a white diffusely reflecting surface, it is possible to monitor the whole depth of a multiple scattering sample with equal statistical weight. This may be a favorable approach for inline Raman spectroscopy in process analytical technology.


Subject(s)
Pharmaceutical Preparations/analysis , Spectrum Analysis, Raman/methods , Tablets/analysis , Absorption , Polymers/chemistry , Spectrum Analysis, Raman/instrumentation
8.
Biotechnol Bioeng ; 87(4): 552-63, 2004 Aug 20.
Article in English | MEDLINE | ID: mdl-15286993

ABSTRACT

Decolorization of textile dyes by a laccase from Trametes modesta immobilized on gamma-aluminum oxide pellets was studied. An enzyme reactor was equipped with various UV/Vis spectroscopic sensors allowing the continuous online monitoring of the decolorization reactions. Decolorization of the dye solutions was followed via an immersion transmission probe. Adsorption processes were observed using diffuse reflectance measurements of the solid carrier material. Generally, immobilization of the laccase does not seem to sterically affect dye decolorization. A range of commercial textile dyes was screened for decolorization and it was found that the application of this enzymatic remediation system is not limited to a certain structural group of dyes. Anthrachinonic dyes (Lanaset Blue 2R, Terasil Pink 2GLA), some azo dyes, Indigo Carmine, and the triphenylmethane dye Crystal Violet were efficiently decolorized. However, the laccase displayed pronounced substrate specificities when a range of structurally related model azodyes was subjected to the biotransformation. Azodyes containing hydroxy groups in ortho or para position relative to the azo bond were preferentially oxidized. The reactor performance was studied more closely using Indigo Carmine.


Subject(s)
Aluminum Oxide/chemistry , Basidiomycota/enzymology , Bioreactors , Color , Coloring Agents/chemistry , Laccase/chemistry , Spectrophotometry, Ultraviolet/methods , Azo Compounds/chemistry , Enzyme Activation , Enzymes, Immobilized/chemistry , Kinetics , Online Systems , Textiles/analysis , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...