Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Int AIDS Soc ; 23 Suppl 6: e25590, 2020 10.
Article in English | MEDLINE | ID: mdl-33000916

ABSTRACT

INTRODUCTION: Screening for acute and early HIV infections (AEHI) among men who have sex with men (MSM) remains uncommon in sub-Saharan Africa (SSA). Yet, undiagnosed AEHI among MSM and subsequent failure to link to care are important drivers of the HIV epidemic. We conducted a systematic review and meta-analysis of AEHI yield among MSM mobilized for AEHI testing; and assessed which risk factors and/or symptoms could increase AEHI yield in MSM. METHODS: We systematically searched four databases from their inception through May 2020 for studies reporting strategies of mobilizing MSM for testing and their AEHI yield, or risk and/or symptom scores targeting AEHI screening. AEHI yield was defined as the proportion of AEHI cases among the total number of visits. Study estimates for AEHI yield were pooled using random effects models. Predictive ability of risk and/or symptom scores was expressed as the area under the receiver operator curve (AUC). RESULTS: Twenty-two studies were identified and included a variety of mobilization strategies (eight studies) and risk and/or symptom scores (fourteen studies). The overall pooled AEHI yield was 6.3% (95% CI, 2.1 to 12.4; I2  = 94.9%; five studies); yield varied between studies using targeted strategies (11.1%; 95% CI, 5.9 to 17.6; I2  = 83.8%; three studies) versus universal testing (1.6%; 95% CI, 0.8 to 2.4; two studies). The AUC of risk and/or symptom scores ranged from 0.69 to 0.89 in development study samples, and from 0.51 to 0.88 in validation study samples. AUC was the highest for scores including symptoms, such as diarrhoea, fever and fatigue. Key risk score variables were age, number of sexual partners, condomless receptive anal intercourse, sexual intercourse with a person living with HIV, a sexually transmitted infection, and illicit drug use. No studies were identified that assessed AEHI yield among MSM in SSA and risk and/or symptom scores developed among MSM in SSA lacked validation. CONCLUSIONS: Strategies mobilizing MSM for targeted AEHI testing resulted in substantially higher AEHI yields than universal AEHI testing. Targeted AEHI testing may be optimized using risk and/or symptom scores, especially if scores include symptoms. Studies assessing AEHI yield and validation of risk and/or symptom scores among MSM in SSA are urgently needed.


Subject(s)
HIV Infections/diagnosis , Homosexuality, Male , Mass Screening , Africa South of the Sahara , Coitus , HIV Infections/physiopathology , Humans , Male , Risk Factors , Sexual and Gender Minorities
2.
Epigenomics ; 12(18): 1661-1672, 2020 09.
Article in English | MEDLINE | ID: mdl-32938224

ABSTRACT

Aim: DNA methylation testing for endometrial cancer detection in minimally invasive specimens is a promising tool to improve screening and diagnostic procedures. Available literature was systematically reviewed to assess the potential of this approach and define methylation markers deserving further development. Methods: A systematic search up to March 31 2020 was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results: 15 methylation markers with an area under the curve value of ≥ 0.80 for endometrial cancer detection in cytological specimens were selected from nine studies. Conclusion: Detection of methylation markers in cytological samples indicate the feasibility of minimally invasive testing methods, potentially guiding diagnosis and detection of endometrial cancer in high-risk women and in cancer screening programs.


Subject(s)
DNA Methylation , Endometrial Neoplasms/diagnosis , Biomarkers, Tumor , Endometrial Neoplasms/genetics , Female , Humans
3.
Scand J Work Environ Health ; 45(2): 114-125, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30370911

ABSTRACT

Objective This study aimed to systematically review the literature on the contribution of work and lifestyle factors to socioeconomic inequalities in self-rated health among workers. Methods A search for cross-sectional and longitudinal studies assessing the contribution of work and/or lifestyle factors to socioeconomic inequalities in self-rated health among workers was performed in PubMed, PsycINFO and Web of Science in March 2017. Two independent reviewers performed eligibility and risk of bias assessment. The median change in odds ratio between models without and with adjustment for work or lifestyle factors across studies was calculated to quantify the contribution of work and lifestyle factors to health inequalities. A best-evidence synthesis was performed. Results Of those reviewed, 3 high-quality longitudinal and 17 cross-sectional studies consistently reported work factors to explain part (about one-third) of the socioeconomic health inequalities among workers (grade: strong evidence). Most studies separately investigated physical and psychosocial work factors. In contrast with the 12 cross-sectional studies, 2 longitudinal studies reported no separate contribution of physical workload and physical work environment to health inequalities. Regarding psychosocial work factors, lack of job resources (eg, less autonomy) seemed to contribute to health inequalities, whereas job demands (eg, job overload) might not. Furthermore, 2 longitudinal and 4 cross-sectional studies showed that lifestyle factors explain part (about one-fifth) of the health inequalities (grade: strong evidence). Conclusions The large contribution of work factors to socioeconomic health inequalities emphasizes the need for future longitudinal studies to assess which specific work factors contribute to health inequalities.


Subject(s)
Life Style , Occupational Health , Socioeconomic Factors , Workload , Health Status Disparities , Humans , Social Class , Stress, Psychological , Workplace
4.
Cochrane Database Syst Rev ; 11: CD004517, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29144545

ABSTRACT

BACKGROUND: Depression is a highly prevalent mood disorder that is characterised by persistent low mood, diminished interest, and loss of pleasure. Music therapy may be helpful in modulating moods and emotions. An update of the 2008 Cochrane review was needed to improve knowledge on effects of music therapy for depression. OBJECTIVES: 1. To assess effects of music therapy for depression in people of any age compared with treatment as usual (TAU) and psychological, pharmacological, and/or other therapies.2. To compare effects of different forms of music therapy for people of any age with a diagnosis of depression. SEARCH METHODS: We searched the following databases: the Cochrane Common Mental Disorders Controlled Trials Register (CCMD-CTR; from inception to 6 May 2016); the Cochrane Central Register of Controlled Trials (CENTRAL; to 17 June 2016); Thomson Reuters/Web of Science (to 21 June 2016); Ebsco/PsycInfo, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Embase, and PubMed (to 5 July 2016); the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), ClinicalTrials.gov, the National Guideline Clearing House, and OpenGrey (to 6 September 2016); and the Digital Access to Research Theses (DART)-Europe E-theses Portal, Open Access Theses and Dissertations, and ProQuest Dissertations and Theses Database (to 7 September 2016). We checked reference lists of retrieved articles and relevant systematic reviews and contacted trialists and subject experts for additional information when needed. We updated this search in August 2017 and placed potentially relevant studies in the "Awaiting classification" section; we will incorporate these into the next version of this review as appropriate. SELECTION CRITERIA: All randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing music therapy versus treatment as usual (TAU), psychological therapies, pharmacological therapies, other therapies, or different forms of music therapy for reducing depression. DATA COLLECTION AND ANALYSIS: Two review authors independently selected studies, assessed risk of bias, and extracted data from all included studies. We calculated standardised mean difference (SMD) for continuous data and odds ratio (OR) for dichotomous data with 95% confidence intervals (CIs). We assessed heterogeneity using the I2 statistic. MAIN RESULTS: We included in this review nine studies involving a total of 421 participants, 411 of whom were included in the meta-analysis examining short-term effects of music therapy for depression. Concerning primary outcomes, we found moderate-quality evidence of large effects favouring music therapy and TAU over TAU alone for both clinician-rated depressive symptoms (SMD -0.98, 95% CI -1.69 to -0.27, 3 RCTs, 1 CCT, n = 219) and patient-reported depressive symptoms (SMD -0.85, 95% CI -1.37 to -0.34, 3 RCTs, 1 CCT, n = 142). Music therapy was not associated with more or fewer adverse events than TAU. Regarding secondary outcomes, music therapy plus TAU was superior to TAU alone for anxiety and functioning. Music therapy and TAU was not more effective than TAU alone for improved quality of life (SMD 0.32, 95% CI -0.17 to 0.80, P = 0.20, n = 67, low-quality evidence). We found no significant discrepancies in the numbers of participants who left the study early (OR 0.49, 95% CI 0.14 to 1.70, P = 0.26, 5 RCTs, 1 CCT, n = 293, moderate-quality evidence). Findings of the present meta-analysis indicate that music therapy added to TAU provides short-term beneficial effects for people with depression if compared to TAU alone. Additionally, we are uncertain about the effects of music therapy versus psychological therapies on clinician-rated depression (SMD -0.78, 95% CI -2.36 to 0.81, 1 RCT, n = 11, very low-quality evidence), patient-reported depressive symptoms (SMD -1.28, 95% CI -3.75 to 1.02, 4 RCTs, n = 131, low-quality evidence), quality of life (SMD -1.31, 95% CI - 0.36 to 2.99, 1 RCT, n = 11, very low-quality evidence), and leaving the study early (OR 0.17, 95% CI 0.02 to 1.49, 4 RCTs, n = 157, moderate-quality evidence). We found no eligible evidence addressing adverse events, functioning, and anxiety. We do not know whether one form of music therapy is better than another for clinician-rated depressive symptoms (SMD -0.52, 95% CI -1.87 to 0.83, 1 RCT, n = 9, very low-quality evidence), patient-reported depressive symptoms (SMD -0.01, 95% CI -1.33 to 1.30, 1 RCT, n = 9, very low-quality evidence), quality of life (SMD -0.24, 95% CI -1.57 to 1.08, 1 RCT, n = 9, very low-quality evidence), or leaving the study early (OR 0.27, 95% CI 0.01 to 8.46, 1 RCT, n = 10). We found no eligible evidence addressing adverse events, functioning, or anxiety. AUTHORS' CONCLUSIONS: Findings of the present meta-analysis indicate that music therapy provides short-term beneficial effects for people with depression. Music therapy added to treatment as usual (TAU) seems to improve depressive symptoms compared with TAU alone. Additionally, music therapy plus TAU is not associated with more or fewer adverse events than TAU alone. Music therapy also shows efficacy in decreasing anxiety levels and improving functioning of depressed individuals.Future trials based on adequate design and larger samples of children and adolescents are needed to consolidate our findings. Researchers should consider investigating mechanisms of music therapy for depression. It is important to clearly describe music therapy, TAU, the comparator condition, and the profession of the person who delivers the intervention, for reproducibility and comparison purposes.


Subject(s)
Depression/therapy , Music Therapy/methods , Adult , Anxiety/therapy , Combined Modality Therapy , Humans , Patient Reported Outcome Measures , Psychotherapy , Quality of Life , Randomized Controlled Trials as Topic , Treatment Outcome
5.
Cochrane Database Syst Rev ; 12: CD011058, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-28002636

ABSTRACT

BACKGROUND: Stroke is a major cause of long-term disability in adults. Several systematic reviews have shown that a higher intensity of training can lead to better functional outcomes after stroke. Currently, the resources in inpatient settings are not always sufficient and innovative methods are necessary to meet these recommendations without increasing healthcare costs. A resource efficient method to augment intensity of training could be to involve caregivers in exercise training. A caregiver-mediated exercise programme has the potential to improve outcomes in terms of body function, activities, and participation in people with stroke. In addition, caregivers are more actively involved in the rehabilitation process, which may increase feelings of empowerment with reduced levels of caregiver burden and could facilitate the transition from rehabilitation facility (in hospital, rehabilitation centre, or nursing home) to home setting. As a consequence, length of stay might be reduced and early supported discharge could be enhanced. OBJECTIVES: To determine if caregiver-mediated exercises (CME) improve functional ability and health-related quality of life in people with stroke, and to determine the effect on caregiver burden. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (October 2015), CENTRAL (the Cochrane Library, 2015, Issue 10), MEDLINE (1946 to October 2015), Embase (1980 to December 2015), CINAHL (1982 to December 2015), SPORTDiscus (1985 to December 2015), three additional databases (two in October 2015, one in December 2015), and six additional trial registers (October 2015). We also screened reference lists of relevant publications and contacted authors in the field. SELECTION CRITERIA: Randomised controlled trials comparing CME to usual care, no intervention, or another intervention as long as it was not caregiver-mediated, aimed at improving motor function in people who have had a stroke. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials. One review author extracted data, and assessed quality and risk of bias, and a second review author cross-checked these data and assessed quality. We determined the quality of the evidence using GRADE. The small number of included studies limited the pre-planned analyses. MAIN RESULTS: We included nine trials about CME, of which six trials with 333 patient-caregiver couples were included in the meta-analysis. The small number of studies, participants, and a variety of outcome measures rendered summarising and combining of data in meta-analysis difficult. In addition, in some studies, CME was the only intervention (CME-core), whereas in other studies, caregivers provided another, existing intervention, such as constraint-induced movement therapy. For trials in the latter category, it was difficult to separate the effects of CME from the effects of the other intervention.We found no significant effect of CME on basic ADL when pooling all trial data post intervention (4 studies; standardised mean difference (SMD) 0.21, 95% confidence interval (CI) -0.02 to 0.44; P = 0.07; moderate-quality evidence) or at follow-up (2 studies; mean difference (MD) 2.69, 95% CI -8.18 to 13.55; P = 0.63; low-quality evidence). In addition, we found no significant effects of CME on extended ADL at post intervention (two studies; SMD 0.07, 95% CI -0.21 to 0.35; P = 0.64; low-quality evidence) or at follow-up (2 studies; SMD 0.11, 95% CI -0.17 to 0.39; P = 0.45; low-quality evidence).Caregiver burden did not increase at the end of the intervention (2 studies; SMD -0.04, 95% CI -0.45 to 0.37; P = 0.86; moderate-quality evidence) or at follow-up (1 study; MD 0.60, 95% CI -0.71 to 1.91; P = 0.37; very low-quality evidence).At the end of intervention, CME significantly improved the secondary outcomes of standing balance (3 studies; SMD 0.53, 95% CI 0.19 to 0.87; P = 0.002; low-quality evidence) and quality of life (1 study; physical functioning: MD 12.40, 95% CI 1.67 to 23.13; P = 0.02; mobility: MD 18.20, 95% CI 7.54 to 28.86; P = 0.0008; general recovery: MD 15.10, 95% CI 8.44 to 21.76; P < 0.00001; very low-quality evidence). At follow-up, we found a significant effect in favour of CME for Six-Minute Walking Test distance (1 study; MD 109.50 m, 95% CI 17.12 to 201.88; P = 0.02; very low-quality evidence). We also found a significant effect in favour of the control group at the end of intervention, regarding performance time on the Wolf Motor Function test (2 studies; MD -1.72, 95% CI -2.23 to -1.21; P < 0.00001; low-quality evidence). We found no significant effects for the other secondary outcomes (i.e. PATIENT: motor impairment, upper limb function, mood, fatigue, length of stay and adverse events; caregiver: mood and quality of life).In contrast to the primary analysis, sensitivity analysis of CME-core showed a significant effect of CME on basic ADL post intervention (2 studies; MD 9.45, 95% CI 2.11 to 16.78; P = 0.01; moderate-quality evidence).The methodological quality of the included trials and variability in interventions (e.g. content, timing, and duration), affected the validity and generalisability of these observed results. AUTHORS' CONCLUSIONS: There is very low- to moderate-quality evidence that CME may be a valuable intervention to augment the pallet of therapeutic options for stroke rehabilitation. Included studies were small, heterogeneous, and some trials had an unclear or high risk of bias. Future high-quality research should determine whether CME interventions are (cost-)effective.


Subject(s)
Caregivers , Exercise Therapy/methods , Postural Balance , Quality of Life , Stroke Rehabilitation/methods , Activities of Daily Living , Adult , Humans , Randomized Controlled Trials as Topic , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...