Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 78(8): 4134-44, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15047829

ABSTRACT

AD101 and SCH-C are two chemically related small molecules that inhibit the entry of human immunodeficiency virus type 1 (HIV-1) via human CCR5. AD101 also inhibits HIV-1 entry via rhesus macaque CCR5, but SCH-C does not. Among the eight residues that differ between the human and macaque versions of the coreceptor, only one, methionine-198, accounts for the insensitivity of macaque CCR5 to inhibition by SCH-C. Thus, the macaque coreceptor engineered to contain the natural human CCR5 residue (isoleucine) at position 198 is sensitive to HIV-1 entry inhibition by SCH-C, whereas a human CCR5 mutant containing the corresponding macaque residue (methionine) is resistant. Position 198 is in CCR5 transmembrane (TM) helix 5 and is not located within the previously defined binding site for AD101 and SCH-C, which involves residues in TM helices 1, 2, 3, and 7. SCH-C binds to human CCR5 whether residue 198 is isoleucine or methionine, and it also binds to macaque CCR5. However, the binding of a conformation-dependent monoclonal antibody to human CCR5 is inhibited by SCH-C only when residue 198 is isoleucine. These observations, taken together, suggest that the antiviral effects of SCH-C and AD101 involve stabilization, or induction, of a CCR5 conformation that is not compatible with HIV-1 infection. However, SCH-C is unable to exert this effect on CCR5 conformation when residue 198 is methionine. The region of CCR5 near residue 198 has, therefore, an important influence on the conformational state of this receptor.


Subject(s)
CCR5 Receptor Antagonists , HIV-1/drug effects , Piperidines , Receptors, CCR5/genetics , Amino Acid Sequence , Animals , Antibodies, Monoclonal , Cell Line , Chemokine CCL5/antagonists & inhibitors , Cyclic N-Oxides/pharmacology , HIV-1/pathogenicity , Humans , Macaca mulatta , Models, Biological , Models, Molecular , Mutagenesis, Site-Directed , Oximes , Protein Conformation , Protein Structure, Tertiary , Pyridines/pharmacology , Receptors, CCR5/chemistry , Signal Transduction/drug effects , Species Specificity
2.
J Virol ; 77(9): 5201-8, 2003 May.
Article in English | MEDLINE | ID: mdl-12692222

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) entry is mediated by the consecutive interaction of the envelope glycoprotein gp120 with CD4 and a coreceptor such as CCR5 or CXCR4. The CCR5 coreceptor is used by the most commonly transmitted HIV-1 strains that often persist throughout the course of infection. Compounds targeting CCR5-mediated entry are a novel class of drugs being developed to treat HIV-1 infection. In this study, we have identified the mechanism of action of two inhibitors of CCR5 function, SCH-350581 (AD101) and SCH-351125 (SCH-C). AD101 is more potent than SCH-C at inhibiting HIV-1 replication in primary lymphocytes, as well as viral entry and gp120 binding to cell lines. Both molecules also block the binding of several anti-CCR5 monoclonal antibodies that recognize epitopes in the second extracellular loop of CCR5. Alanine mutagenesis of the transmembrane domain of CCR5 suggests that AD101 and SCH-C bind to overlapping but nonidentical sites within a putative ligand-binding cavity formed by transmembrane helices 1, 2, 3, and 7. We propose that the binding of small molecules to the transmembrane domain of CCR5 may disrupt the conformation of its extracellular domain, thereby inhibiting ligand binding to CCR5.


Subject(s)
CCR5 Receptor Antagonists , Cyclic N-Oxides/pharmacology , HIV-1/drug effects , HIV-1/pathogenicity , Piperidines , Pyridines/pharmacology , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , HIV Envelope Protein gp120/metabolism , Humans , Membrane Fusion , Models, Molecular , Molecular Sequence Data , Oximes , Pyridines/chemistry , Receptors, CCR5/chemistry , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Virus Replication
3.
Nat Med ; 9(3): 343-6, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12579198

ABSTRACT

A topical microbicide reduces the probability of virus transmission when applied to the vagina or rectum of a person at risk of sexually acquiring HIV-1 infection. An effective microbicide could significantly reduce the global spread of HIV-1, particularly if women were able to use it covertly to protect themselves. A microbicide could target the incoming virus and either permanently inactivate it or reduce its infectivity, or it could block receptors on susceptible cells near the sites of transmission. We describe here how vaginal administration of the broadly neutralizing human monoclonal antibody b12 can protect macaques from simian-human immunodeficiency virus (SHIV) infection through the vagina. Only 3 of 12 animals receiving 5 mg b12 vaginally in either saline or a gel and then challenged vaginally (up to 2 h later) with SHIV-162P4 became infected. In contrast, infection occurred in 12 of 13 animals given various control agents under similar conditions. Lower amounts of b12 were less effective, suggesting that protection was dose dependent. These observations support the concept that viral entry inhibitors can help prevent the sexual transmission of HIV-1 to humans.


Subject(s)
Antibodies, Monoclonal/administration & dosage , HIV Antibodies/administration & dosage , HIV Envelope Protein gp120/immunology , HIV Infections/transmission , HIV-1/immunology , Simian Acquired Immunodeficiency Syndrome/transmission , Administration, Intravaginal , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/immunology , Female , HIV Antibodies/immunology , HIV Antibodies/therapeutic use , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/genetics , HIV-1/physiology , Humans , Immunization, Passive , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/physiology , Viral Load
4.
Proc Natl Acad Sci U S A ; 99(1): 395-400, 2002 Jan 08.
Article in English | MEDLINE | ID: mdl-11782552

ABSTRACT

To study HIV-1 escape from a coreceptor antagonist, the R5 primary isolate CC1/85 was passaged in peripheral blood mononuclear cells with increasing concentrations of the CCR5-specific small molecule inhibitor, AD101. By 19 passages, an escape mutant emerged with a >20,000-fold resistance to AD101. This virus was cross-resistant to a related inhibitor, SCH-C, and partially resistant to RANTES but still sensitive to CCR5-specific mAbs. The resistant phenotype was stable; the mutant virus retained AD101 resistance during nine additional passages of culture in the absence of inhibitor. Replication of the escape mutant in peripheral blood mononuclear cells completely depended on CCR5 expression and did not occur in cells from CCR5-Delta32 homozygous individuals. The escape mutant was unable to use CXCR4 or any other tested coreceptor to enter transfected cells. Acquisition of CXCR4 use is not the dominant in vitro escape pathway for a small molecule CCR5 entry inhibitor. Instead, HIV-1 acquires the ability to use CCR5 despite the inhibitor, first by requiring lower levels of CCR5 for entry and then probably by using the drug-bound form of the receptor.


Subject(s)
CCR5 Receptor Antagonists , HIV-1/metabolism , Niacinamide/analogs & derivatives , Piperazines/metabolism , Receptors, CXCR4/metabolism , Amino Acid Sequence , Antibodies, Monoclonal/metabolism , Cells, Cultured , Chemokine CCL5/metabolism , Dose-Response Relationship, Drug , HIV Infections/metabolism , HIV-1/genetics , HIV-1/physiology , HeLa Cells , Humans , Leukocytes, Mononuclear/virology , Molecular Sequence Data , Mutation , Niacinamide/metabolism , Phenotype , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...